跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪違仁
研究生(外文):Wei-Ren Hung
論文名稱:電漿後處理對SiOx奈米線場發射特性之影響
論文名稱(外文):The Effect of Plasma Treatments on the Field Emission Characteristics of SiOx Nanowires
指導教授:李世鴻李世鴻引用關係
指導教授(外文):Shih-Fong Lee
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:113
中文關鍵詞:SiOx奈米線場發射觸媒矽-鎳合金
外文關鍵詞:SiOx nanowiresfield emissionmetal-inducedSi-Ni alloy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在(100)矽基板上蒸鍍一層鎳薄膜,在溫度(1000°C)、氬氣流量500sccm、成長時間2小時的狀況下誘發析出矽原子以成長SiOx奈米線。本研究針對鎳膜厚度(5nm~25nm)所析出SiOx奈米線的結構性質和電漿處理過後,電流與電場間的關係來進行研究。從SEM圖中發現,典型SiOx奈米線平均管徑與鎳膜厚度之間呈現幾乎線性的關係。由實驗結果可總結出以下的結論,如果將催化劑鎳膜厚度增大,在成核階段會形成尺寸較大及數量較少的催化劑顆粒,而所析出的SiOx奈米線的直徑也會較大且數量也會較少。由於尖端曲率較小且場發射點較少,因此這些直徑較大且數量較少的SiOx奈米線的場發射電流也會降低。因此,我們必須盡可能使鎳膜厚度縮小,所析出的SiOx奈米線才能獲得不錯的場發射特性。研究發現,雖然典型SiOx奈米線的場發射電流比奈米碳管來得小,但是經過Ar電漿處理後,SiOx奈米線的屏蔽效應會被有效地降低,且頂端的形貌會有所改變,使得電子容易從尖端射出。而經過CF4電漿處理的SiOx奈米線會產生叢集的現象,因而提高SiOx奈米線的表面密度,且其表面呈現凹凸不平的狀態而增加其場發射點。因此,SiOx奈米線經過電漿後處理可以大幅改善其場發射特性,獲得足以與奈米碳管相比擬的場發射特性。這顯示SiOx奈米線具有作為場發射元件的發展潛力,這與學界普遍的看法並不相同。
關鍵字:SiOx奈米線、場發射、觸媒、矽-鎳合金
In this work, a layer of nickel was evaporated onto a (100) silicon substrate to induce the precipitation of silicon at 1000°C for 2 hours in order to grow SiOx nanowires. The thickness of nickel layer was varied to study its effects on the field emission characteristics of SiOx nanowires. As observed from SEM graphs, the average diameter of SiOx nanowires varies almost linearly with the thickness of catalyst Ni layer. It can be concluded that thicker Ni layer produces lager and fewer catalyst balls in the nucleation stage resulting in larger and fewer SiOx nanowires. These larger and fewer SiOx nanowires in turn emit less current due to lower curvature at the tip and lower quantity of emission sites. Therefore, the thickness of Ni layer must be kept to minimum in order to obtain decent field emission characteristics. Even so, the emitted currents from SiOx nanowires are still lower than those emitted from carbon nanotube. It is found in this study that the screening effect of SiOx nanowires can be effectively reduced and the tip can be modified by Ar plasma treatment so that electrons can emit easily from the tips. On the other hand, conglomeration phenomenon of SiOx nanowires is found after CF4 plasma treatment which increases the surface density of SiOx nanowires and the number of emission sites. Hence, the field emission characteristics of SiOx nanowires are enhanced and field emission characteristics comparable to those of carbon nanotubes are achieved after plasma post-treatment. These results clearly manifest the potential of using SiOx nanowire in field emitter applications, and this is quite different to what people might think.
Keywords: SiOx nanowires, field emission, metal-induced precipitation, Si-Ni alloy
封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................v
誌謝..........................vi
目錄..........................vii
圖目錄.........................x
表目錄.........................xv

第一章 簡介......................1
1.1奈米材料的歷史與簡介..............1
1.2奈米材料的特徵.................4
  1.2.1表面效應.................4
  1.2.2小尺寸效應................5
  1.2.3量子穿隧效應...............7
1.3奈米材料的應用.................9
  1.3.1場發電子源................12
  1.3.2場發射電子源的特性............13
1.4研究動機....................14
第二章 文獻回顧....................15
2.1氫氣電漿處理文獻................16
2.2氫氣退火處理文獻................21
第三章 理論與研究方法.................25
3.1電子場發射理論.................25
3.2奈米線的成長機制................28
  3.2.1 Vapor-Liquid-Solid(VLS)...........29
  3.2.2氧化輔助生長(Oxide-Assisted Growth, OAG)...31
  3.2.3 Vapor-Solid(VS)...............33
  3.2.4 Solution-Liquid-Solid.............34
  3.2.5 Solid-Liquid-Solid(SLS)............36
  3.2.6 Solid-Solid transformation(SS).........38
3.3電漿蝕刻機制..................39
3.4實驗儀器原理..................40
  3.4.1熱蒸鍍系統................40
  3.4.2高溫爐管系統...............41
  3.4.3電漿蝕刻系統...............42
  3.4.4掃描式電子顯微鏡系統...........45
  3.4.5能量散佈分析儀系統............46
  3.4.6 FTIR(霍氏轉換紅外光譜儀)的分析.....48
  3.4.7場發射量測裝置系統............49
3.5實驗步驟....................51
  3.5.1蒸鍍...................51
  3.5.2成長SiOx奈米線..............52
  3.5.3電漿後處理................53
  3.5.4電性量測.................53
第四章 實驗結果與討論.................54
4.1典型SiOx奈米線的研究與討論...........54
  4.1.1掃瞄式電子顯微鏡(SEM)的分析........54
  4.1.2電子場發射分析..............61
4.2 Ar電漿後處理對SiOx奈米線的的研究與討論.....64
  4.2.1掃瞄式電子顯微鏡(SEM)的分析........64
  4.2.2穿透式電子顯微鏡(TEM)的分析........68
  4.2.3能量散佈分析儀(EDS)的分析.........69
  4.2.4霍氏轉換紅外光譜儀(FTIR)的分析.......71
  4.2.5電子場發射的分析.............73
4.3 CF4電漿後處理對SiOx奈米線的研究與討論.....77
  4.3.1掃瞄式電子顯微鏡(SEM)的分析........77
  4.3.2穿透式電子顯微鏡(TEM)的分析........80
  4.3.3能量散佈分析儀(EDS)的分析.........81
  4.3.4霍氏轉換紅外光譜儀(FTIR)的分析.......84
  4.3.5電子場發射的分析.............86
4.4不同電漿處理對SiOx奈米線的研究與討論......90
  4.4.1掃瞄式電子顯微鏡(SEM)的分析比較......90
  4.4.2穿透式電子顯微鏡(TEM)的分析比較......92
  4.4.3能量散佈分析儀(EDS)的分析比較.......93
  4.4.4霍氏轉換紅外光譜儀(FTIR)的分析比較.....94
  4.4.5電流密度的分析比較............96
第五章 結論......................98
參考文獻........................101
[1]A. S. Edelstein and R. C. Cammarata, Chap. 1 in "Nanomaterails: Synthesis, Properties and Applications", Ed. by A. S. Edelstein and R. C. Cammarata, lOP Publishing. (1996).
[2]H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl, & R. E. Smalley, ”C60: Buckminsterfullerene”, Nature. 318, pp. 162-163. (1985).
[3]W. Kratschmer, L. D. Lamb, K. Fostiropoulos, & D. R. Huffman, “A new form of carbon. Nature“, Solid C60. 347, pp. 354-358. (1990).
[4]A. Maiti, C. J., Brabec, C. Roland, &, J. Bernholc, “Theory of carbon nanotube growth”, Phys. Rev. Lett. 52, pp. 14850-14858. (1995).
[5]林景崎,”奈米材料導論”,(2004)。
[6]T. C. Cheng,a_ J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, App. Phys. Lett. 88, pp. 263118. (2006).
[7]D. Whang, S. Jin, Y. Wu and C. M. Lieber, “Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems”, Nano Lett. 3, pp. 1255-1259. (2003).
[8]J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan ,and C. M. Lieber, “Ge/Si nanowire heterostructures as highperformance field-effect transistors”, Nature. 441, pp. 498-493. (2006).
[9]F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello and S. T. Lee, “Electron field emission from silicon nanowires”, Appl. Phys. Lett. 75, pp. 1700. (1999).
[10]S. T. Purcell, V. T. Binh and N. Garcia, “64 meV measured energy dispersion from cold field emission nanotips”, Appl. Phys. Lett. 67, pp. 436. (1995).
[11]W. A. Deheer, A. Chatelain and D. Ugarte, “A carbon nanotube field-emission electron source”, Science. 270, pp. 1179. (1995).
[12]Iijima S. “Helical microtubules of graphitic carbon”, Nature. 354, pp.56-58. (1991).
[13]李元勋,何爲,唐先忠,等. “納米氧化錫的製程與特性測試”,實驗科學與技術,1, pp.61-62. (2003)。
[14]田時開,江天府,楊興華,曾葆青,”碳納米管薄膜的製程及處理對場發射特性的影響”,電子科技大學學報,第36卷,第6期. (2006)。
[15]N. D. Jonge, Y. Lamy, K. Schoots, et al. “High brightness electron beam from a multi-walled carbon nanotube”, Nature. 420, pp. 393-395. (2002).
[16]張兆祥,張耿明,侯士敏,等. “碳納米管的薄膜場發射”,真空科學技術學報,23, pp. 27-32. (2003)。
[17]W. Zhu, “Vacuum Microelectronics”, Wiley, New York. (2001).
[18]N. S. Xu, and S. Ejaz Huqb, Mater. Sci. Eng. 48, pp. 47. (2005).
[19]W. A. de Heer, A. Chatelain, and D. Ugarte, Science. 269, pp. 1179. (1995).
[20]Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “Field emission from MoO3 nanobelts”, Appl. Phys. Lett. 81, pp. 5048. (2002).
[21]Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Ren, “Growth of aligned carbon nanotubes with controlled site density”, Appl. Phys. Lett. 80, pp. 4018. (2002).
[22]G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode”, Appl. Phys. Lett. 81, pp. 355. (2002).
[23]C. S. Hsieh, G. Wang, D. S. Tsai, R. S. Chen, and Y. S. Huang, “Field emission characteristics of ruthenium dioxide nanorods”, Nanotechnology. 16, pp. 1885-1891. (2005).
[24]C. K. A. Frederick, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires”, Appl. Phys. Lett. 75, pp. 1700. (1999).
[25]D. Banerjee, S. H. Jo, and Z. F. Ren, Adv. Mater. Weinheim, Ger. 16, pp. 2028. (2004).
[26]J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang, and Z. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys. Lett. 87, pp. 223108. (2005).
[27]Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, and T. K. Sham, “Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains”, Appl. Phys. Lett. 79, pp. 1673. (2001).
[28]M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays”, Composites. 35, pp. 179. (2004).
[29]A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science. 279, pp. 208-211. (1998).
[30]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism”, Chem. Phys. Lett. 323, pp. 224-228. (2000).
[31]S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor nanowires from oxides”, Mater. Res. 14, pp. 4503-4507. (1999).
[32]Z. L. Wang, R. P. Gao, Z. W. Pan, and Z. R. Dai, “Nano-scale mechanics of nanotubes,nanowires, and nanobelts”, Adv. Eng. Mater. 3, pp. 657. (2001).
[33]C. X. Xu, and X. W. Sun, “Field emission from zinc oxide nanopins”, Appl. Phys. Lett. 83, pp. 3806. (2003).
[34]J. Niu, J. Sha, X. Ma, J. Xu, and D. Yang, “Array-orderly single crystalline silicon nano-wires”, Chem. Phys. Lett. 367, pp. 528-532. (2003).
[35]L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, R. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, Nano Lett. 4, pp. 1575. (2004).
[36]L. Dvorson, G. Sha, I. Kymissis, C. Y. Hong, and A. Akinwande, “Electrical and optical characterization of field emitter tips with integrated vertically stacked focus”, IEEE Trans. Electron Devices. 50, pp. 2548-2558. (2003).
[37]S. Itoh, M. Tanaka, and T. Tonegawa, “Development of field emission displays”, J. Vac. Sci. Technol. 22, pp.1362-1366. (2004).
[38]Y. Cui, and Charles M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks“, Science. 291, pp. 851-853. (2001).
[39]Baoqing. Zeng, Guangyong. Xiong, Shuo. Chen, S. H. Jo, W. Z. Wang, D. Z. Wang, and Z. F. Ren, “Field emission of nanowires”, App. Phys. Lett. 88, pp. 213108. (2006).
[40]T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, “Hydrogen plasma dry etching method for field emission application”, App. Phys. Lett. 88, pp. 263118. (2006).
[41]M. J. Yang, J. Shieh, S. L. Hsu, I. J. Huang, C. C. Leu, S. W. Shen, T. Y. Huang, P. Lehnen, and C. H. Chien, “Low-temperature growth of polycrystalline Ge films on SiO2 substrate by HDPCVD”, Electrochem. Solid-State Lett. 8, pp. C74. (2005).
[42]楊閔智,謝健,許瓊姿,鄭宗杰,”以氫電漿乾式蝕刻法製作準直矽奈米草陣列”,奈米通訊.第十二卷第三期.pp. 44-49。
[43]M. C. Yang, J. Shieh, C. C. Hsu, and T. C. Cheng, “Well-aligned silicon nanograss fabricated by hydrogen plasma dry etching”, Electrochem. Solid- State Lett. 8, pp. C131. (2005).
[44]R. H. Fowler, and L. Nordheim, Proc. R. Soc. London. 119, pp. 137. (1928).
[45]S. Sadewasser, Th. Glatzel, M. Rusu, A. Jager-Waldau, and M. Ch. Lux-Steiner, “High-resolution work function imaging of single grains of semiconductor surfaces”, Appl. Phys. Lett. 80, pp. 2979. (2002).
[46]J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, “Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope”, Phys. Rev. Lett. 89, pp. 197602. (2002).
[47]J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, Phys. Rev. Lett. 89, pp. 197602. (2002).
[48]M. C. Rossi, S. Salvatori, P. Ascarelli, E. Cappelli, and S. Orlando, “Effect of nanostructure and back contact material on the field emission properties of carbon films”, Diamond Relat. Mater. 11, pp. 819-823. (2002).
[49]F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires”, Appl. Phys. Lett. 75, pp. 1700. (1999).
[50]C. J. Edgcombe, and U. Valdré, Philos. Mag. 82, pp. 987. (2002).
[51]C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberger, J. App. Phys.Lett. 47, pp. 5248. (1976).
[52]E. Minoux, O. Groening, K. B. J. Teo, S. H. Dalal, L. Gangloff, J. P. Schnell, L.Hudanski, I. Y. Y. Bu, P. Vincent, P. Legagneux, G. A. J. Amaratunga, and W. I. Milne, Nano Lett. 5, pp. 2135. (2005).
[53]C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Gorindarj, Prog. Solid State Chem. 31, pp. 5. (2003).
[54]R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, App. Phys. Lett. 4, pp. 89. (1964).
[55]R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME. 233, pp. 1053. (1965).
[56]R. S. Wagner, “Whisker technology”, Edited by App. Phys. Lett., Wiley New York. 3, pp. 47-119. (1970).
[57]Y. Wu and P. Yang, J. Am.Chem. ”Direct observation of vapor-liquid-solid nanowire growth”, Science. 123, pp. 3165-3166. (2001).
[58]Y. W. Wang, C. H. Liang, G. W. Meng, X. S. Peng, and L. D. Zhang, J. Matter. Chem. 12, pp. 651. (2002).
[59]D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters”, Appl. Phys. Lett. 73, pp. 3076. (1998).
[60]H. F. Zhang, C. M. Wang, Edgar C. Buck, and L. S. Wang, “Synthesis, characterization, and manipulation of helical SiO2 Nanosprings”, Nano Lett. 3, pp. 577-580. (2003).
[61]X. C. Wu, W. H Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires”, Chem. Phys. Lett. 336, pp. 53. (2001).
[62]Y. J. Chen, J. B. Li, Y. S. Han, Q. M. Wei, and J. H. Dai, “A novel morphology of SiOx nanowires with a modified”, App. Phys. Lett. 74, pp. 433-435. (2002).
[63]J. C. Wang, C. Z. Zhan, and F. G. Li, “The synthesis of silica nanowire arrays”, Solid State Commun. 125, pp. 629-631. (2003).
[64]Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am, Chem. Soc. 124, pp. 1817. (2002).
[65]S. H. Sun, G. W. Meng, M. G. Zhang, Y. T. Tian, T. Xie, and L. D. Zhang, Solid State Commun. 128, pp. 287. (2003).
[66]J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiquchi, and D. Golberg, Adv. Matter. 17, pp. 971. (2005).
[67]S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, “Oxide-assisted semiconductor nanowire growth”, MRS Bull. 24, pp 36-42. (1999).
[68]S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, and Y. W. Chung, J. Mater. Res. 14, pp. 4503. (1999).
[69]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, Phys. Rev. 58, pp. R16024. (1998).
[70]T. S. Chu, R. Q. Zhang, and H. F. Cheung,” Geometric and electronic structures of silicon oxide clusters” J. Phys. Chem. 105, pp. 1705-1709. (2001).
[71]R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Matter. 15, pp. 635. (2003).
[72]X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and characterization of Ge/SiOx nanocables”, App. Phys. Lett. 83, pp. 2241. (2003).
[73]Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires”, App. Phys. Lett. 78, pp. 2214. (2001).
[74]G. W. Zhou, H. Li, H. P. Sun, D. P. Yu, Y. Q. Wang, X. J. Huang, L. Q. Chen, and Z. Zhang, App. Phys. Lett. 75, pp. 2447. (1999).
[75]D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, “Small-diameter silicon nanowire surfaces”, Science. 299, pp. 1874. (2003).
[76]Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, ”Germanium nanowires sheathed with an oxide layer”, Phys. Rev. 61, pp. 4518-4521. (2000).
[77]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee,and S. T. Lee, “Microstructures of gallium nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett. 345, pp. 377-380. (2001).
[78]H. Y.Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee,and S. T. Lee, Chem. Phys. Lett. 327, pp. 263. (2000).
[79]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Matter. 13, pp. 591. (2001).
[80]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”, App. Phys. Lett. 78, pp. 3304. (2001).
[81]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac, Sci. Technol. 19, pp. 1115. (2001).
[82]J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 344, pp. 97. (2001).
[83]Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Synthesis and characterization of amorphous carbon nanowires”, Appl. Phys. Lett. 75, pp. 2921. (1999).
[84]K. H. Lee, S. W. Lee, R. R. Vanflee, and W. Sigmund, Chem. Phys. Lett. 376, pp. 498. (2003).
[85]Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture”, J. Cryst. Growth. 233, pp. 803-808. (2001).
[86]L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, “Aligned silica nanofibres”, J. Phys.:Condens. Matter. 14, pp. L473. (2002).
[87]L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, “Strong blue photoluminescence from aligned silica nanofibers”, Appl. Phys. Lett. 76, pp. 625-627. (2003).
[88]T. J. Trentler, K. M. Hickman, S. C. Goel, Ann M. Viano, Patrick C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth”, Science. 270, pp. 1791-1974. (1995).
[89]X. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, ”Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate”, Nano Lett. 3, pp. 93-99. (2003).
[90]Y. J. Xing, Z. H. Xi, Z. Q. Xue, and D. P Yu, Chin. Phys. Lett. 20, pp. 700. (2003).
[91]Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, ”Growth of silicon nanowires by heating Si substrate”, Chin. Phys. Lett. 19, pp. 240. (2002).
[92]S. H. Sun, G. W. Meng, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, Y. X. Jin and L. D. Zhang, “Micrometer-sized Si-Sn-O structures With SiOx nanowires on their surface”, Appl. Phys. Lett. 76, pp. 999-1002. (2003).
[93]B. T. Park, and K. Yong, “Controlled growth of core–shell Si–SiOx and amorphous SiO2 nanowires directly from NiO/Si”, Nanotechnology. 15, pp. S365-370. (2004).
[94]M. Paulose, O. K. Varghese, and C. A. Grimes, J. Nanosic. Nanotech. 3, pp. 341. (2003).
[95]K. H. Lee, H. S. Yang, K. H. Baik, J. Bang, R. R. Vanfleet, and W. Sigmund, “Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films”, Chem. Phys. Lett. 383, pp. 380. (2004).
[96]H. Hanamura, H. Itoh, Y. Shimogaki, J. Aoyama, T. Yoshimi, J. Ueda, and H. Komiyama, Thin Solid Films. 320, pp. 31. (1998).
[97]Lieberman, M. A., and A. J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, John Wiley & Sons Inc. (1994).
[98]H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall Inc. (2001).
[99]李世鴻著,積體電路製程技術”,五南圖書出版公司印行,(1998)。
[100]C. H. Liang, G. W. Meng, L. D. Zhang, Y. C. Wu, Z. Cui, “Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles”, Chem Phys Lett. 329, pp. 323-328. (2000).
[101]D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, Microse. Res. Tech. 64, pp. 373. (2004).
[102]H. Takikawa, M. Yatsuki, and T. Sakakibara, “Synthesis of silicon oxide nanofibers by sublimation of SiC in medium vacuum with oxygen flow”, Jpn. J. Appl. Phys. 38, pp. L401. (1999).
[103]Y. W. Zhu, F. C. Cheong , T. Yu, X. J. Xu, C. T. Lim, J. T. L. Thong, Z. X. Shen, C. K. Ong, Y. J. Liu, A. T. S. Wee, C. H. Sow, “Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films”, Carbon. 43, pp. 395-400. (2005).
[104]許博凱著,奈米碳管電漿後處理對場發射特性之影響”,大葉大學碩士論文,(2007)。
[105]Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission”, App. Phys. Lett. 86, pp. 133112. (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top