[1]A. S. Edelstein and R. C. Cammarata, Chap. 1 in "Nanomaterails: Synthesis, Properties and Applications", Ed. by A. S. Edelstein and R. C. Cammarata, lOP Publishing. (1996).
[2]H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl, & R. E. Smalley, ”C60: Buckminsterfullerene”, Nature. 318, pp. 162-163. (1985).
[3]W. Kratschmer, L. D. Lamb, K. Fostiropoulos, & D. R. Huffman, “A new form of carbon. Nature“, Solid C60. 347, pp. 354-358. (1990).
[4]A. Maiti, C. J., Brabec, C. Roland, &, J. Bernholc, “Theory of carbon nanotube growth”, Phys. Rev. Lett. 52, pp. 14850-14858. (1995).
[5]林景崎,”奈米材料導論”,(2004)。
[6]T. C. Cheng,a_ J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, App. Phys. Lett. 88, pp. 263118. (2006).
[7]D. Whang, S. Jin, Y. Wu and C. M. Lieber, “Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems”, Nano Lett. 3, pp. 1255-1259. (2003).
[8]J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan ,and C. M. Lieber, “Ge/Si nanowire heterostructures as highperformance field-effect transistors”, Nature. 441, pp. 498-493. (2006).
[9]F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello and S. T. Lee, “Electron field emission from silicon nanowires”, Appl. Phys. Lett. 75, pp. 1700. (1999).
[10]S. T. Purcell, V. T. Binh and N. Garcia, “64 meV measured energy dispersion from cold field emission nanotips”, Appl. Phys. Lett. 67, pp. 436. (1995).
[11]W. A. Deheer, A. Chatelain and D. Ugarte, “A carbon nanotube field-emission electron source”, Science. 270, pp. 1179. (1995).
[12]Iijima S. “Helical microtubules of graphitic carbon”, Nature. 354, pp.56-58. (1991).
[13]李元勋,何爲,唐先忠,等. “納米氧化錫的製程與特性測試”,實驗科學與技術,1, pp.61-62. (2003)。
[14]田時開,江天府,楊興華,曾葆青,”碳納米管薄膜的製程及處理對場發射特性的影響”,電子科技大學學報,第36卷,第6期. (2006)。
[15]N. D. Jonge, Y. Lamy, K. Schoots, et al. “High brightness electron beam from a multi-walled carbon nanotube”, Nature. 420, pp. 393-395. (2002).
[16]張兆祥,張耿明,侯士敏,等. “碳納米管的薄膜場發射”,真空科學技術學報,23, pp. 27-32. (2003)。
[17]W. Zhu, “Vacuum Microelectronics”, Wiley, New York. (2001).
[18]N. S. Xu, and S. Ejaz Huqb, Mater. Sci. Eng. 48, pp. 47. (2005).
[19]W. A. de Heer, A. Chatelain, and D. Ugarte, Science. 269, pp. 1179. (1995).
[20]Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “Field emission from MoO3 nanobelts”, Appl. Phys. Lett. 81, pp. 5048. (2002).
[21]Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Ren, “Growth of aligned carbon nanotubes with controlled site density”, Appl. Phys. Lett. 80, pp. 4018. (2002).
[22]G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode”, Appl. Phys. Lett. 81, pp. 355. (2002).
[23]C. S. Hsieh, G. Wang, D. S. Tsai, R. S. Chen, and Y. S. Huang, “Field emission characteristics of ruthenium dioxide nanorods”, Nanotechnology. 16, pp. 1885-1891. (2005).
[24]C. K. A. Frederick, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires”, Appl. Phys. Lett. 75, pp. 1700. (1999).
[25]D. Banerjee, S. H. Jo, and Z. F. Ren, Adv. Mater. Weinheim, Ger. 16, pp. 2028. (2004).
[26]J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang, and Z. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys. Lett. 87, pp. 223108. (2005).
[27]Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, and T. K. Sham, “Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains”, Appl. Phys. Lett. 79, pp. 1673. (2001).
[28]M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays”, Composites. 35, pp. 179. (2004).
[29]A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science. 279, pp. 208-211. (1998).
[30]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism”, Chem. Phys. Lett. 323, pp. 224-228. (2000).
[31]S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor nanowires from oxides”, Mater. Res. 14, pp. 4503-4507. (1999).
[32]Z. L. Wang, R. P. Gao, Z. W. Pan, and Z. R. Dai, “Nano-scale mechanics of nanotubes,nanowires, and nanobelts”, Adv. Eng. Mater. 3, pp. 657. (2001).
[33]C. X. Xu, and X. W. Sun, “Field emission from zinc oxide nanopins”, Appl. Phys. Lett. 83, pp. 3806. (2003).
[34]J. Niu, J. Sha, X. Ma, J. Xu, and D. Yang, “Array-orderly single crystalline silicon nano-wires”, Chem. Phys. Lett. 367, pp. 528-532. (2003).
[35]L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, R. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, Nano Lett. 4, pp. 1575. (2004).
[36]L. Dvorson, G. Sha, I. Kymissis, C. Y. Hong, and A. Akinwande, “Electrical and optical characterization of field emitter tips with integrated vertically stacked focus”, IEEE Trans. Electron Devices. 50, pp. 2548-2558. (2003).
[37]S. Itoh, M. Tanaka, and T. Tonegawa, “Development of field emission displays”, J. Vac. Sci. Technol. 22, pp.1362-1366. (2004).
[38]Y. Cui, and Charles M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks“, Science. 291, pp. 851-853. (2001).
[39]Baoqing. Zeng, Guangyong. Xiong, Shuo. Chen, S. H. Jo, W. Z. Wang, D. Z. Wang, and Z. F. Ren, “Field emission of nanowires”, App. Phys. Lett. 88, pp. 213108. (2006).
[40]T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, “Hydrogen plasma dry etching method for field emission application”, App. Phys. Lett. 88, pp. 263118. (2006).
[41]M. J. Yang, J. Shieh, S. L. Hsu, I. J. Huang, C. C. Leu, S. W. Shen, T. Y. Huang, P. Lehnen, and C. H. Chien, “Low-temperature growth of polycrystalline Ge films on SiO2 substrate by HDPCVD”, Electrochem. Solid-State Lett. 8, pp. C74. (2005).
[42]楊閔智,謝健,許瓊姿,鄭宗杰,”以氫電漿乾式蝕刻法製作準直矽奈米草陣列”,奈米通訊.第十二卷第三期.pp. 44-49。[43]M. C. Yang, J. Shieh, C. C. Hsu, and T. C. Cheng, “Well-aligned silicon nanograss fabricated by hydrogen plasma dry etching”, Electrochem. Solid- State Lett. 8, pp. C131. (2005).
[44]R. H. Fowler, and L. Nordheim, Proc. R. Soc. London. 119, pp. 137. (1928).
[45]S. Sadewasser, Th. Glatzel, M. Rusu, A. Jager-Waldau, and M. Ch. Lux-Steiner, “High-resolution work function imaging of single grains of semiconductor surfaces”, Appl. Phys. Lett. 80, pp. 2979. (2002).
[46]J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, “Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope”, Phys. Rev. Lett. 89, pp. 197602. (2002).
[47]J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, Phys. Rev. Lett. 89, pp. 197602. (2002).
[48]M. C. Rossi, S. Salvatori, P. Ascarelli, E. Cappelli, and S. Orlando, “Effect of nanostructure and back contact material on the field emission properties of carbon films”, Diamond Relat. Mater. 11, pp. 819-823. (2002).
[49]F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires”, Appl. Phys. Lett. 75, pp. 1700. (1999).
[50]C. J. Edgcombe, and U. Valdré, Philos. Mag. 82, pp. 987. (2002).
[51]C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberger, J. App. Phys.Lett. 47, pp. 5248. (1976).
[52]E. Minoux, O. Groening, K. B. J. Teo, S. H. Dalal, L. Gangloff, J. P. Schnell, L.Hudanski, I. Y. Y. Bu, P. Vincent, P. Legagneux, G. A. J. Amaratunga, and W. I. Milne, Nano Lett. 5, pp. 2135. (2005).
[53]C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Gorindarj, Prog. Solid State Chem. 31, pp. 5. (2003).
[54]R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, App. Phys. Lett. 4, pp. 89. (1964).
[55]R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME. 233, pp. 1053. (1965).
[56]R. S. Wagner, “Whisker technology”, Edited by App. Phys. Lett., Wiley New York. 3, pp. 47-119. (1970).
[57]Y. Wu and P. Yang, J. Am.Chem. ”Direct observation of vapor-liquid-solid nanowire growth”, Science. 123, pp. 3165-3166. (2001).
[58]Y. W. Wang, C. H. Liang, G. W. Meng, X. S. Peng, and L. D. Zhang, J. Matter. Chem. 12, pp. 651. (2002).
[59]D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters”, Appl. Phys. Lett. 73, pp. 3076. (1998).
[60]H. F. Zhang, C. M. Wang, Edgar C. Buck, and L. S. Wang, “Synthesis, characterization, and manipulation of helical SiO2 Nanosprings”, Nano Lett. 3, pp. 577-580. (2003).
[61]X. C. Wu, W. H Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires”, Chem. Phys. Lett. 336, pp. 53. (2001).
[62]Y. J. Chen, J. B. Li, Y. S. Han, Q. M. Wei, and J. H. Dai, “A novel morphology of SiOx nanowires with a modified”, App. Phys. Lett. 74, pp. 433-435. (2002).
[63]J. C. Wang, C. Z. Zhan, and F. G. Li, “The synthesis of silica nanowire arrays”, Solid State Commun. 125, pp. 629-631. (2003).
[64]Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am, Chem. Soc. 124, pp. 1817. (2002).
[65]S. H. Sun, G. W. Meng, M. G. Zhang, Y. T. Tian, T. Xie, and L. D. Zhang, Solid State Commun. 128, pp. 287. (2003).
[66]J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiquchi, and D. Golberg, Adv. Matter. 17, pp. 971. (2005).
[67]S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, “Oxide-assisted semiconductor nanowire growth”, MRS Bull. 24, pp 36-42. (1999).
[68]S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, and Y. W. Chung, J. Mater. Res. 14, pp. 4503. (1999).
[69]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, Phys. Rev. 58, pp. R16024. (1998).
[70]T. S. Chu, R. Q. Zhang, and H. F. Cheung,” Geometric and electronic structures of silicon oxide clusters” J. Phys. Chem. 105, pp. 1705-1709. (2001).
[71]R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Matter. 15, pp. 635. (2003).
[72]X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and characterization of Ge/SiOx nanocables”, App. Phys. Lett. 83, pp. 2241. (2003).
[73]Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires”, App. Phys. Lett. 78, pp. 2214. (2001).
[74]G. W. Zhou, H. Li, H. P. Sun, D. P. Yu, Y. Q. Wang, X. J. Huang, L. Q. Chen, and Z. Zhang, App. Phys. Lett. 75, pp. 2447. (1999).
[75]D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, “Small-diameter silicon nanowire surfaces”, Science. 299, pp. 1874. (2003).
[76]Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, ”Germanium nanowires sheathed with an oxide layer”, Phys. Rev. 61, pp. 4518-4521. (2000).
[77]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee,and S. T. Lee, “Microstructures of gallium nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett. 345, pp. 377-380. (2001).
[78]H. Y.Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee,and S. T. Lee, Chem. Phys. Lett. 327, pp. 263. (2000).
[79]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Matter. 13, pp. 591. (2001).
[80]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”, App. Phys. Lett. 78, pp. 3304. (2001).
[81]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac, Sci. Technol. 19, pp. 1115. (2001).
[82]J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 344, pp. 97. (2001).
[83]Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Synthesis and characterization of amorphous carbon nanowires”, Appl. Phys. Lett. 75, pp. 2921. (1999).
[84]K. H. Lee, S. W. Lee, R. R. Vanflee, and W. Sigmund, Chem. Phys. Lett. 376, pp. 498. (2003).
[85]Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture”, J. Cryst. Growth. 233, pp. 803-808. (2001).
[86]L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, “Aligned silica nanofibres”, J. Phys.:Condens. Matter. 14, pp. L473. (2002).
[87]L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, “Strong blue photoluminescence from aligned silica nanofibers”, Appl. Phys. Lett. 76, pp. 625-627. (2003).
[88]T. J. Trentler, K. M. Hickman, S. C. Goel, Ann M. Viano, Patrick C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth”, Science. 270, pp. 1791-1974. (1995).
[89]X. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, ”Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate”, Nano Lett. 3, pp. 93-99. (2003).
[90]Y. J. Xing, Z. H. Xi, Z. Q. Xue, and D. P Yu, Chin. Phys. Lett. 20, pp. 700. (2003).
[91]Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, ”Growth of silicon nanowires by heating Si substrate”, Chin. Phys. Lett. 19, pp. 240. (2002).
[92]S. H. Sun, G. W. Meng, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, Y. X. Jin and L. D. Zhang, “Micrometer-sized Si-Sn-O structures With SiOx nanowires on their surface”, Appl. Phys. Lett. 76, pp. 999-1002. (2003).
[93]B. T. Park, and K. Yong, “Controlled growth of core–shell Si–SiOx and amorphous SiO2 nanowires directly from NiO/Si”, Nanotechnology. 15, pp. S365-370. (2004).
[94]M. Paulose, O. K. Varghese, and C. A. Grimes, J. Nanosic. Nanotech. 3, pp. 341. (2003).
[95]K. H. Lee, H. S. Yang, K. H. Baik, J. Bang, R. R. Vanfleet, and W. Sigmund, “Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films”, Chem. Phys. Lett. 383, pp. 380. (2004).
[96]H. Hanamura, H. Itoh, Y. Shimogaki, J. Aoyama, T. Yoshimi, J. Ueda, and H. Komiyama, Thin Solid Films. 320, pp. 31. (1998).
[97]Lieberman, M. A., and A. J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, John Wiley & Sons Inc. (1994).
[98]H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall Inc. (2001).
[99]李世鴻著,積體電路製程技術”,五南圖書出版公司印行,(1998)。
[100]C. H. Liang, G. W. Meng, L. D. Zhang, Y. C. Wu, Z. Cui, “Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles”, Chem Phys Lett. 329, pp. 323-328. (2000).
[101]D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, Microse. Res. Tech. 64, pp. 373. (2004).
[102]H. Takikawa, M. Yatsuki, and T. Sakakibara, “Synthesis of silicon oxide nanofibers by sublimation of SiC in medium vacuum with oxygen flow”, Jpn. J. Appl. Phys. 38, pp. L401. (1999).
[103]Y. W. Zhu, F. C. Cheong , T. Yu, X. J. Xu, C. T. Lim, J. T. L. Thong, Z. X. Shen, C. K. Ong, Y. J. Liu, A. T. S. Wee, C. H. Sow, “Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films”, Carbon. 43, pp. 395-400. (2005).
[104]許博凱著,奈米碳管電漿後處理對場發射特性之影響”,大葉大學碩士論文,(2007)。[105]Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission”, App. Phys. Lett. 86, pp. 133112. (2005).