跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱意珊
研究生(外文):Yi-Shan Chiu
論文名稱:Y2Ti2O7:Er3+螢光粉體之製備與螢光特性研究
論文名稱(外文):A study on preparation and luminescence properties of Er3+-doped Y2Ti2O7 nanocrystals
指導教授:丁初稷
指導教授(外文):Chu-Chi Ting
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:80
中文關鍵詞:螢光生命週期燒綠石螢光光譜上轉換
外文關鍵詞:ErbiumupconversionPLpyrochlorelifetime
相關次數:
  • 被引用被引用:1
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究改變不同的摻雜濃度與製程溫度來合成Er3+-doped Y2Ti2O7粉末,並探討其螢光特性。

我們使用溶膠-凝膠法製備Er3+ (3, 5, 7, 10 mol%)-doped Y2Ti2O7奈米粉末,由實驗結果可得知其在Er3+ (5 mol%)–doped Y2Ti2O7粉末在退火溫度超過757℃後,具有良好的結晶特性,其平均結晶顆粒大小隨著退火溫度的提高 (800~1000 ℃) 而從~70 nm增加到~180 nm。在980 nm紅外線雷射激發下,具有下與上轉換發光特性,其發光峰值分別為526 nm (2H11/2→4I15/2 )、547 nm (4S3/2→4I15/2)、660 nm (4F9/2→4I15/2)、1528 nm ( 4I13/2→4I15/2)。

而螢光放射波長在1528 nm的螢光生命週期,在Er3+摻雜濃度為(5 mol%) 時其衰減曲線為單一指數,但摻雜濃度為10 mol%時就稍為有一點偏離單一指數,此兩種摻雜濃度其上轉換機制皆為雙光子吸收,但是Er3+摻雜濃度較高 (10 mol%) 時,則因為短的鉺離子間距進而增強了上轉換能量轉移(energy-transfer up-conversion)及交互緩弛能量轉移 (energy-transfer cross- relaxation) 機制,所以得到較強的紅光。
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase Er3+-doped Y2Ti2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ~70 to ~180 nm under 800 to 1000 °C/1 h annealing. The Er3+-doped Y2Ti2O7 nanocrystals absorbing the 980 nm photons can produce the up-conversion (526, 547, and 660 nm; 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2, respectively) and Stokes luminescence (1528 nm; 4I13/2→4I15/2).

The IR PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For both 5 and 10 mol% Er3+ doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption; however, much stronger intensity of red light relative to green light was observed for sample with 10 mol% Er3+ doping concentration. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer up-conversion and cross-relaxation mechanisms.
目錄
摘要………………………………………………………………………I
英文摘要………………………………………………………………II
致謝…………………………………………………………………..III
目錄…………………………………………………………………..IV
表目錄………………………………………………………………..VII
圖目錄……………………………………………………………….VIII
第一章 緒論...............................................1
1-1研究背景...............................................1
1-2 研究動機..............................................2
第二章 文獻回顧與理論基礎.................................4
2-1 發光機制簡介..........................................4
2-1-1 發光原理............................................4
2-1-2 螢光與磷光..........................................4
2-1-3 史托克位移..........................................5
2-1-4 波拉特選擇律........................................6
2-1-5 自旋選擇律..........................................6
2-2 螢光材料的分類與應用..................................7
2-2-1螢光材料的分類.......................................7
2-2-2螢光材料的應用.......................................9
2-3 稀土元素簡介.........................................10
2-3-1 稀土離子的電子躍遷.................................11
2-3-2 稀土離子的發光機制.................................11
2-4 影響螢光材料發光之因素...............................12
2-4-1 濃度粹取效應.......................................12
2-4-2 熱粹滅.............................................13
2-4-3 雜質毒化...........................................13
2-5 Y2Ti2O7螢光粉簡介....................................14
2-5-1 Pyrochlore結構特性介紹.............................14
2-5-2 Y2Ti2O7結構特性介紹................................15
2-6無機螢光材料之設計....................................15
2-7無機螢光材料之製備....................................16
2-7-1固態反應法..........................................16
2-7-2共同沉澱法..........................................17
2-7-3溶膠凝膠法..........................................17
第三章 實驗方法..........................................28
3-1 實驗藥品.............................................28
3-2 製程設備.............................................29
3-3 量測儀器.............................................29
3-3-1 掃瞄式電子顯微鏡...................................29
3-3-2 X-ray 粉末繞射分析.................................30
3-3-3 熱分析............................................30
3-3-4 光致發光光譜.......................................31
3-3-5 螢光生命週期.......................................32
3-4 實驗步驟.............................................33
第四章 結果與討論........................................38
4-1 熱重分析.............................................38
4-2 X-ray 粉末繞射分析...................................38
4-3掃瞄式電子顯微鏡分析..................................40
4-4光致發光光譜分析......................................41
4-4-1 全光譜分析.........................................41
4-4-2雷射功率對光譜強度之影響............................44
4-4-3 發光機制探討.......................................45
4-5螢光生命週期分析......................................47
第五章 結論與未來展望....................................60
參考文獻.................................................62
[1] B.S. Richards, Sol. Energ. Mat. Sol. C. 90 (2006) 2329.
[2] B.S. Richards, A. Shalav, Synth. Met. 154 (2005) 61.
[3] A. Shalav, B.S. Richards, M.A. Green, Sol. Energ. Mat. Sol. C. 91(2007) 829.
[4] J.R. Lakowicz, “Principles of Fluorescence Spectroscopy”, Springer,New York, 2006, p.1-5.
[5] 劉如熹、劉宇恆,”發光二極體用氧氮螢光粉介紹”,全華科技圖書股份有限公司,台北市,民國95年。
[6] G. Blasse, B.C. Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, 1994, p.34-35.
[7] G. Liu, B. Jacquier, “Spectroscopic Properties of Rare Earths in Optical Materials”, Springer, New York, 2005, p.109.
[8] C. Feldmann, T. Jüstel, C.R. Ronda, P.J. Schmidt, Adv. Funct. Mater.13 (2003) 511.
[9] B.E. Douglas, D.H. McDaniel, J.J. Alexander, “Concepts and Models of Inorganic Chemistry”, John Wiley and Sons, Inc., New York,1994.
[10] S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press,Boca Raton, 1999, p. 3.
[11] P. Atkins and D. de Paula, “Physical Chemistry”, Oxford university press, 1997, p. 207.
[12] 工研院,”材料產業暨稀土材料發展研討會論文集”,工研院編印,台灣,民國93年。
[13] G.H. Dieke, H.M. Crosswhite, Appl. Optics 2 (1963) 675.
[14] J.A. DeLuca, J. Chem. Educ. 57 (1980) 541.
[15] S.W. Han, J.S. Gardner, C.H. Booth, Phys. Rev. B 69 (2004) 024416.
[16] A.R. Cleave, “Atomic Scale Simulations for Waste Form Applica- tions”, Department of Materials Imperial College of Science, Technology and Medicine, 2006, p.20-22.
[17] L.M. Ershova , B.V. Ignat`ev, L.P. Kusalova, E.E. Lomonova, V.I. Myzina, V.M. Tatarintsev, L.G. Shcherbakova, Inorg. Mater 13 (1977) 1634.
[18] H.C. Gupta, S. Brown, J. Phys. Chem. Solids 64 (2003) 2205.
[19] M. Hamoumi, M. Wiegel, G. Blasse, J. Solid State Chem. 108 (1994) 410.
[20] A.F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza, U. Amador, Solid State Sci. 7 (2005) 343.
[21] 王書任、林仁鈞,”讓LED發光的功臣-螢光粉”,科學發展,435期,民國98年3月。
[22] 劉如熹、劉宇恆,” 發光二極體激發之SrSi2N2O2:Yb化合物螢光粉介紹”,科儀新知,28卷,2期,民國95年10月。
[23] S. Yin, D. Chen, W. Tang, Y. Peng, Materials Science and Engineering B 136 (2007) 193.
[24] J.K. Park, D.Y. Kim, J. Am. Ceram. Soc. 79 (1996) 1407.
[25] M. Gomi, T. Kanie, Jpn. J. Appl. Phys. 35 (1996) 1789.
[26] C. Chang, J. Xu, L. Jiang, D. Mao, W. Ying, Mater. Chem. Phys. 98 (2006) 509.
[27] R.V. Kamat, K.T. Pillai, V.N. Vaidya, D.D. Sood, Mater. Chem. Phys. 46 (1996) 67.
[28] T.I. Khristov, N.V. Popovich, S.S. Galaktionov, Glass Ceram. 51 (1994) 9.
[29] L. Yang, T. Lu, H. Xu, W. Zhang, B. Ma, J. Appl. Phys. 107 (2010) 064903.
[30] ASTM JCPDS File No. 42-0413 (Y2Ti2O7) (1997).
[31] Y. Takahashi, S. Okada, R.B.H. Tahar, K. Nakano, T. Ban, Y. Ohya, J. Non-Cryst. Solids 218 (1997) 129.
[32] 鄭信民、林麗娟,”X光繞射應用簡介”,工業材料雜誌,181期,民國91年1月。
[33] F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Chem. Mater. 15 (2003) 2737.
[34] J. Lian, J. Chen, L.M. Wang, R.C. Ewing, J. Matt Farmer, L.A. Boatner, K.B. Helean, Phys. Rev. B 68 (2003) 134107.
[35] S.W. Han, J.S. Gardner, C.H. Booth, Phys. Rev. B 69 (2004) 024416.
[36] M.J. Weber, Phys. Rev. 171 (1968) 283.
[37] L.A. Riseberg, H.W. Moos, Phys. Rev. 174 (1968) 429.
[38] C.C. Ting, S.Y. Chen, H.Y. Lee, J. Appl. Phys. 94 (2003) 2102.
[39] M. Langlet, C. Coutier, J. Fick, M. Audier, W. Meffre, B. Jacquier,R. Rimet, Opt. Mater. 16 (2001) 463.
[40] X. Orignac, D. Barbier, X.M. Du, R.M. Almeida, O. McCarthy, E.Yeatman, Opt. Mater. 12 (1999) 1.
[41] M. Carrada, F. Gourbilleau, C. Dufour, M. Levalois, R. Rizk, Opt.Mater. 27 (2005) 915.
[42] D. Mariano da Silva, L.R.P. Kassab, S.R. Lüthi, C.B. de Araújo,A.S.L. Gomes, M.J.V. Bell, Appl. Phys. Lett. 90 (2007) 081913.
[43] X. Qiao, X. Fan, J. Wang, M. Wang, J. Appl. Phys. 99 (2006) 074302-1-074302-8.
[44] F. Vetrone, J.C. Boyer, J.A. Capobianco, J. Phys. Chem. B 107 (2003) 10747-10752.
[45] G.S. Maciel, N. Rakov, M. Fokine, I.C.S. Carvalho, C.B. Pinheiro,Appl. Phys. Lett. 89 (2006) 081109-1-081109-3.
[46] X. Qin, T. Yokomori, Y. Ju, Appl. Phys. Lett. 90 (2007) 073104.
[47] P. Ghosh, S. Sadhu, T. Sen, A. Patra, Bull. Mater. Sci. 31 (2008) 461.
[48] P. Blixt, J. Nilsson, T. Carlinäs, B. Jaskorzynska, IEEE. Photonic Technol. Lett. 3 (1991) 996-998.
[49] F. Auzel, Chem. Rev. 104 (2004) 139.
[50] M.P. Hehlen, G. Frei, H.U. Güdel, Phys. Rev. B 50 (1994) 16264.
[51] A. Walasek, E. Zych, J. Zhang, S. Wang, J. Lumines. 127 (2007) 523.
[52] M. Langlet, P. Jenouvrier, R. Rimet, J. Fick, Opt. Mater. 25 (2004) 141.
[53] P. Jenouvrier, M. Langlet, R. Rimet, J. Fick, Appl. Phys. A 77 (2003) 687.
[54] P. Jenouvrier, J. Fick, M. Audier, M. Langlet, Opt. Mater. 27 (2004) 131.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top