跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王建翰
研究生(外文):Chien-Han Wang
論文名稱:中空二氧化矽奈米粒子表面改質及其在塑膠基板上製作高穿透高疏水複合塗膜
論文名稱(外文):Surface-modificationof hollow silica nanoparticles to prepare highly transparent and hydrophobic composite coatings on plastic substrates
指導教授:張朝欽張朝欽引用關係
口試委員:鄭廖平黃逢璽
口試日期:2016-07-19
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:61
中文關鍵詞:溶膠-凝膠法中空二氧化矽奈米粒子紫外光硬化疏水性 壓克力樹酯塑膠基板透明的複合塗膜
外文關鍵詞:Sol-gelhollow silica nanoparticlehydrophobictransparent coatingplastic substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用溶膠-凝膠法在室溫下合成中空二氧化矽奈米粒子,粒徑約100 nm且進行表面改質。改質分成兩種方式,(I) 3-(三甲氧基甲矽烷基)丙基丙烯酸酯及氟化矽烷共同改質中空二氧化矽奈米粒子;(II)六甲基二矽氮烷改質中空二氧化矽奈米粒子。在方法(I)中,壓克力單體與中空二氧化矽奈米粒子,在PMMA基板上經由旋轉塗佈成膜再進行紫外光曝光,中空二氧化矽奈米粒和壓克力樹酯產生共價鍵結完成複合塗膜。中空二氧化矽奈米粒子與氟化矽烷莫耳比4.5 : 0.2,接觸角109o,在波長380~760 nm平均穿透率99.1%。在方法(II)中,PMMA基板上浸塗一層共聚物poly(MMA-co-MA),接著浸塗上中空二氧化矽奈米粒子。塗膜接觸角129o、穿透率86%、附著度5B。


In this study, ~100 nm spherical hollow silica nanoparticles were synthesized by the sol-gel method at room temperature, and were surface-modifyed. The modification was divided into two parts: (I) 3-(trimethoxysilyl)propylmethacrylate (MSMA) and 1H,1H,2H,2H-perfluorooctyltrimethoxysilane co-modified hollow silica nanoparticles; (II) hexamethyldisilazane (HMDS) modified hollow silica nanoparticles. In the method (I), the composite coatings were prepared using acrylic monomer and hollow silica nanoparticles via spin coating on the PMMA substrate followed by UV-curing. The hollow silica nanoparticles and the acrylic resin have covalent bondings. The contact angle of the coating (SiO2 : fluorosilane = 4.5 : 0.2) was 109o, and average transmittance was 99.1% in the wavelength range of 380 – 760 nm. In the method (II), the poly(methylmethacrylate-co-methacrylate). was dipped on the PMMA substrate followed by dip coating of the sol of hollow silica nanoparticles. The contact angle of 129o, the average transmittance of 86%, and adhesion of 5B of the coating were obtained.

目錄
中文摘要...........................I
英文摘要...........................II
表目錄............................V
圖目錄............................VI
第1章 緒論..........................1
1-1 前言...........................1
1-2 研究動機與方法......................2
第2章 文獻回顧........................3
2-1 疏水原理.........................3
2-2 中空二氧化矽製作及其改質.................4
2-3 奈米粒子疏水複合塗膜製作.................6
第3章 實驗部分........................8
3-1 實驗藥品.........................8
3-2 實驗流程與步驟.....................13
3-2-1 13F改質中空二氧化矽奈米粒子塗膜...........13
3-2-2 HMDS改質中空二氧化矽奈米粒子塗膜...........16
3-3 分析儀器........................19
第4章 結果與討論.......................22
4-1 13F改質中空二氧化矽奈米粒子塗膜.............22
4-2 HMDS改質中空二氧化矽奈米粒子塗膜............35
第5章 結論..........................46
參考資料...........................47
附錄A............................49
附錄B............................52
附錄C............................54
附錄D............................61

表目錄
表2-1官能基表面能表......................3
表3-1ASTM試驗結果等級判別區分(ASTM D 3359-95)........21
表4-1中空二氧化矽塗料配方..................22
表4-2F1系列數據表......................24
表4-3F2系列數據表......................27
表4-4F2系列數據表(SAC/DPHA = 7/3)..............28
表4-5F3系列數據表......................31
表4-6 0.9HMDS塗膜數據表...................35
表4-7 0.8HMDS塗膜數據表...................35
表4-8 H-SOL 塗膜數據表...................36
表4-9 DIP PMMA塗膜數據表..................37
表4-10 SPIN PMMA塗膜數據表.................38
表4-11塗膜數據表......................39
表4-12H-SOL浸泡時間數據表..................40
表4-13共聚物不同提拉速度數據表...............41
表4-14不同析出條件數據表..................42
表4-1595 OC下塗膜數據表...................42

圖目錄
圖3-1中空SIO2改質MSMA及13F粒徑分佈圖............14
圖3-213F改質中空SIO2流程圖.................15
圖3-3HMDS改質中空SIO2流程圖.................17
圖3-4中空二氧化矽及其改質粒徑分佈圖.............18
圖3-5H-SOL TEM圖......................18
圖4-1F1塗膜穿透率對波長作圖.................24
圖4-2F1-20塗膜表面及截面SEM圖................25
圖4-3F1-20 SAC塗膜表面及截面SEM圖..............26
圖4-4 F2-20塗膜表面及截面SEM圖...............29
圖4-5F2-30塗膜表面及截面SEM圖................30
圖4-6 F3-10塗膜表面及截面SEM圖...............32
圖4-7 F3-20塗膜表面及截面SEM圖...............33
圖4-8F3-30塗膜表面及截面SEM圖................34
圖4-9DIP 15 WT% PMMA H-SOL未烘烤塗膜表面及截面SEM圖.....43
圖4-10DIP 15 WT% PMMA H-SOL烘烤4小時塗膜表面及截面SEM圖...44
圖4-11DIP 10 WT% PMMA H-SOL烘烤4小時塗膜表面及截面SEM圖...45



1. L.Xu, J. He, Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir, 2012. 28(19): p. 7512-7518.
2. Z. Geng,, J. He, L. Yao, Fabrication of robust high-transmittance superamphiphobic coatings through dip-coating followed by spray-coating.RSC Advances, 2015. 5(108): p. 89262-89268.
3. J.H.Simons, Fluorine Chemistry. Elsevier. Vol. V. 1964. p. 308
4. W.Wu, Q. Zhu, F. Qing, C.-C. Han, Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect. Langmuir, 2009. 25(1): p. 17-20.
5. A. B. D. Cassie, S.Baxter., Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546.
6. L.Ernawati,T. Qgi, R. Balgis, K. Okuyama, M. Stucki, S.-C. Hess, W.-J. Stark, Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir, 2016. 32(1): p. 338-345.
7. C.Takai, H. Watanabe, T. Asai, M. Fuji, Determine apparent shell density for evaluation of hollow silica nanoparticle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 404: p. 101-105.
8. Y. Wan, S.-H.Yu., Polyelectrolyte controlled large scale synthesis of hollow silica spheres with tunable sizes and wall thicknesses. The Journal of Physical Chemistry C, 2008. 112: p. 3641-3647.
9. Y. Du, L.-E.Luna, W.-S. T, M.-F. Rubner, R.-E. Cohen, Hollow silica nanoparticles in UV-visible antireflection coatings for pol(methyl methacrylate) substrates.ACSNano, 2010. 4(7): p. 4308.
10. M.Fujiwara, K. Shiokawa, I. Sakakura, Y. Nakahara, Preparation of hierarchical architectures of silica particles with hollow structure and nanoparticle shells: a material for the high reflectivity of UV and visible light. Langmuir, 2010. 26(9): p. 6561-6567.
11. X.Wang, X.-R. Miao, Z.-M. Li, W.-L. Deng, Fabrication of microporous hollow silica spheres templated by NP-10 micelles without calcinations. Applied Surface Science, 2011. 257(7): p. 2481-2488.
12. Y.Bao, C. Shi, T. Wang, X. Li, J. Ma, Recent progress in hollow silica: Template synthesis, morphologies and applications. Microporous and Mesoporous Materials, 2016. 227: p. 121-136.
13. D.Ebert, B. Bhushan, Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir, 2012. 28(31): p. 11391-11399.
14. L.Xu, L. Gao, J. He, Fabrication of visible/near-IR antireflective and superhydrophobic coatings from hydrophobically modified hollow silica nanoparticles and poly(methyl methacrylate).RSCAdvances, 2012. 2(33): p. 12764.
15. L.Gao, J. He, Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings. Journalof Colloid and Interface Science, 2013. 396: p. 152-159.
16. G.Zhou, J. He, L. Gao, T. Ren, T. Li, Superhydrophobic self-cleaning antireflective coatings on Fresnel lenses by integrating hydrophilic solid and hydrophobic hollow silica nanoparticles.RSCAdvances, 2013. 3(44): p. 21789.
17. W.-H.Huang, C.-S. Lin, Robust superhydrophobic transparent coatings fabricated by a low-temperature sol–gel process. Applied Surface Science, 2014. 305: p. 702-709.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top