跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/30 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柄境
論文名稱:混合式前饋技術及降低平均電感電流之具有快速暫態響應和高效率的升降壓轉換器
論文名稱(外文):Hybrid Buck-Boost Feed-Forward and Reduced Average Inductor Current Techniques in Fast Transient and High Efficiency Buck-Boost Converter
指導教授:陳科宏陳科宏引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:48
中文關鍵詞:電源管理技術直流/直流轉換器升降壓轉換器前饋式技術高效率快速的線性暫態反應
外文關鍵詞:power management techniqueDC-DC converterbuck-boost converterfeed-forward techniquehigh efficiencyfast line transien response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於可攜式電子產品整合愈來愈多功能於一體,利用高效率的電源管理技術來達到延長電池壽命的功效受到注目。為了可以有效的將電池的所有能量轉換使用,直流/直流轉換器必須可以工作在一大範圍的供應電源之下,輸出電壓可能比輸入電源高或低,唯有升降壓轉換器才能符合兩者的要求。然而傳統的升降壓轉換器在每個操作周期都會將功率級的四個開關切換一次,因此切換損失會是普通的升壓和降壓轉換器的兩倍。此外在輸入電壓接近輸出電壓時,電感電流的平均值會是單純降壓或低責任週期升壓的兩倍,所以導通損失會比此兩種狀況還要高達四倍,也因此在一些產品的效率圖上可以看到在輸入電壓接近輸出電壓時會往下掉。

穩壓器利用負回授的方式來防止輸入電壓或是負載瞬間改變。升降壓轉換器是利用誤差放大器的輸出電壓與兩個固定的三角波來決定責任週期的大小,因為三角波的峰值與谷值是固定的,所以系統暫態反應的速度取決於誤差放大器輸出電壓變化的快慢,然而誤差放大器的輸出往往有一個補償系統的電容,因此誤差放大器的輸出並無法快速改變,在未改變完成之前,輸出電壓會因為能量不足或過多而受到影響,此現象在某些應用是上是不被允許的。

本篇論文提出一個高效率且輸出電壓漣波小的升降壓轉換器來達到延長電池壽命的目的,此外混合升壓及降壓前饋式技術整合於此轉換器中來達到快速的線性暫態反應。新型的控制方式讓轉換器在每個週期僅有兩個開關切換,因此切換損失如同單純的降壓或升壓轉換器,並且利用降低平均電感電流值的技術來達到降低導通損失,所以此新型態的控制方式可以同時降低切換損失及導通損失來提升整體轉換器的效能。由於加入了混合升壓及降壓的前饋式技術,輸入電壓變化對誤差放大器的輸出電壓變化的影響降到最低,因此轉換器在輸入電壓快速改變時可以快速的將輸出電壓回穩。此轉換器以台灣積體電路製造股份有限公司點二五微米互補式金氧製程來實現,輸入電壓範圍從2.7伏特到4.5伏特,其負載範圍從50毫安培到400毫安培。實驗結果顯示在鋰電池的供應電壓範圍下,輸出電壓可以被穩定在目標值,並且當轉換器改變操作模式時,輸出電壓也不會受到影響。整體最高效率為96%,且即使是輸入電壓接近輸出電壓,效率仍可以維持在相當高。此外輸入電壓變化對輸出電壓的影響被大幅的降低。
Chapter 1 1
Introduction 1
1.1 Background and Basic Knowledge of Power Management System 1
1.2 Classification of Voltage Regulators 3
1.2.1 Low Dropout Regulator (LDR) 3
1.2.2 Charge Pump Converter 5
1.2.3 Switching Converter 6
1.2.4 Comparison 7
1.3 Motivation 8
1.4 Thesis Organization 9
Chapter 2 10
Basic Knowledge of Buck-Boost Converter 10
2.1 Topologies of Buck-Boost Converter 11
2.1.1 Combination of Boost Converter with Low Dropout Regulator 11
2.1.2 Flyback Converter 11
2.1.3 Inverting Buck-Boost Converter 12
2.1.4 Cuk Converter 13
2.1.5 Single-Ended-Primary-Inductance Converter 13
2.1.6 Boost Converter Cascaded with Buck Converter 14
2.2 Non-Inverting Buck-Boost Converter 14
2.3 Summary 16
Chapter 3 18
The Topology of the Buck-Boost Converter with Hybrid Buck-Boost Feed-Forward (HBBFF) and Reduced Average Inductor Current (RAIC) Technique 18
3.1 The method and analysis of the RAIC technique 18
3.2 The method and analysis of the HBBFF technique 21
Chapter 4 24
The Implementation of the Proposed Buck-Boost Converter 24
4.1 The implementation of dynamic buck saw-tooth generator 26
4.2 The implementation of dynamic boost saw-tooth generator 28
4.3 Mode detector for implementing the RAIC technique 31
Chapter5 35
Experimental Results, Conclusions, and Future Works of Proposed Buck-Boost Converter 35
5.1 Experimental Results 35
5.2 Conclusions 43
5.3 Future Work 44
Reference 44
[1] TPS63000: “High Efficient Single Inductor Buck-Boost Converter with 1.8A Switches,” Tech. Rep., Texas Instruments.
[2] LTC3454: “1A Synchronous Buck-boost High Current LED Driver,” datasheet, Linear Technology Corporation, December 2005.
[3] Maxim application note AN-1205, “W-CDMA Power Supply Dramatically Improves Transmit Efficiency” –http://www.maxim-ic.com/appnotes.cfm/an_pk/1205
[4] D. Maksimovic, “Power management model and implementation of power management ICs for next generation wireless applications,” Tutorial presented at the International Conference on Circuits and System (ISCAS), 2002.
[5] “Technical Review of Low Dropout Voltage Regulator Operation and Performance,” Texas Instruments Incorporated, Dallas, TX, Aug. 1999.
[6] G.A. Rincon-Mora and P.E. Allen, “Study and Design of Low Drop-out Regulators,” submitted to IEEE Transactions on Circuit and Systems.
[7] P. Favrat, P. Deval and M. J. Declercq, ”A high-efficiency CMOS voltage doubler” IEEE Journal of Solid-State Circuits, vol. 33, pp. 410-416, March 1998.
[8] James S. Zeng, Lajos Burgyan, and Rendon A. Hollowa, “Highly efficient step-down/step-up and step-up/step-down charge pump,” United States Patent, Patent Number 6,657,875, July 16, 2002.
[9] Robert W. Erickson and Dragon Maksimovic, Fundamentals of Power Electronics, 2nd ed. Noirwell, MA: Kluwer, 2000.
[10] Yu-Huei Lee, Shih-Jung Wang, Chun-Yu Hsieh, Ke-Horng Chen, “Current mode DC-DC buck converters with optimal fast-transient control”, Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, 99.3045-3048, May 2008.
[11] Chi Yat Leung, Philip K.T. Mok, “A 1-V Integrated Current-Mode Boost Converter in Standard 3.3 / 5-V CMOS Technologies,” IEEE J. Solid-State Circuits, Vol. 40, No. 11, pp.2265-2274, Nov. 2005.
[12] LTC3440: “Micropower Synchronous Buck-Boost DC/DC Converter,” Tech. Rep., Linear Technology.
[13] W. R. Liou, M. L. Yeh, Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC For Portable Applications,” in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667-677, Mar. 2008.
[14] S. Zhou and G.A. Rincon-Mora, “A High Efficiency, Soft Switching Dc–Dc Converter with Adaptive Current-Ripple Control for Portable Applications,” in IEEE Trans. Circuits Syst. II, vol. 53, no. 4, pp. 319-323, April. 2006.
[15] R. Paul and Dragon Maksimovic, “Analysis of PWM Nonlinearity in Non-inverting Buck-Boost Power Converter,” in Proc. IEEE PESC Conf. 2008, pp. 3741-3747.
[16] David M. Dwelley and Trevor W. Barcelo, “Systems and Methods for Linearly Varying a Pulse-Width Modulation Signal with a Control Signal”, US PATENT, Patent Number 6404251, Jun. 11, 2002.
[17] 3.3 V lithium-ion-cell buck/boost supply requires one inductor. [Online], Available: http://korea.maximum-ic.com/appnotes.cfm/appnote_number/312.
[18] Paul, R., Corradini, L., and Maksimovic, D., “Modulated Digitally Controlled Non-Inverting Buck-Boost Converter for WCDMA RF Power Amplifiers”, in Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 533-539, Feb. 2009.
[19] Huan-Jen Yang, Ke-Horng Chen, and Yung-Pin Lee, “Feed-Forward Pulse Width Modulation for High Line Regulation Buck or Boost Converter,” Circuits and Systems ISCAS 2007. IEEE International Symposium on Circuits and Systems, pp. 785-788, May, 2007.
[20] M. D. Dwelley and T. W. Barecelo, “Control Circuit and Method for Maintaining High Efficiency in a Buck-Boost Switching Regulator,” U.S. Patent 6166527, Dec. 2000.
[21] C. Jingquan, D. Maksimovic, and R. W. Erickson, “Analysis and Design of a Low-Stress Buck-Boost Converter in Universal-Input PFC Applications,” in IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 320-329, Mar 2006.
[22] Lee. Y.J, Khaligh. A, Emadi. A, “A Compensation Technique for Smooth Transitions in a Noninverting Buck-Boost Converter,” in IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1002-1015, Apr. 2009.
[23] Xiaoyong Ren, Xinbo Ruan, Hai Qian, Mingqiu Li, Qianhong Chen, “Three-Mode Dual-Frequency Two-Edge Modulation Scheme for Four-Switch Buck-Boost Converter,” in IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 499-509, Feb. 2009.
[24] Yali Xiong, Shan Sun, Hongwei Jia, Shea. P, Shen. Z.J, “New Physical Insights on Power MOSFET Switching Losses,” in IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 525-531, Feb. 2009.
[25] Eberle. W, Zhang. Z, Liu. Y.F, Sen. P.C, “A Practical Switching Loss Model for Buck Voltage Regulators,” in IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 700-713, Mar. 2009.
[26] Jingquan Chen, Dragon Maksimovic, and Robert W. Erickson, “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, in Proc. IEEE PESC Conf. 2001, pp. 17-21.
[27] Schaltz. E, Rasmussen. P.O, Khaligh. A, “Non-Inverting Buck-Boost Converter for Fuel Cell Applications” in Industrial Electronics, pp.855-860, Nov. 2008.
[28] B Arbetter and D Maksimovic, “Feed-Forward Pulse-Width Modulators for Switching Power Converters,” in Proc. IEEE PESC Conf. 1995, pp 601-607.
[29] M. K. Kazimierczuk and L. A. Starman, “Dynamic Performance of PWM DC-DC Boost Converter with Input Voltage Feed-forward Control,” in IEEE Transactions on Circuits and System I, vol. 46, no. 12, pp 601-607, Dec. 1999.
[30] S. Chae, B. Hyun, P. Agarwal, W. Kim, and B. Cho, “Digital Predictive Feed-Forward Controller for a DC–DC Converter in Plasma Display Panel,” in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp.627-634, Mar. 2008.
[31] X. Cao, W.J. Chiang, Y. C. King, Y. K. Lee, “Electromagnetic Energy Harvesting Circuit With Feed-forward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System,” in IEEE Transactions on Power Electronics, vol. 22, no. 2, pp.479-486, Mar. 2007.
[32] B. Sahu and G.A. Rincon-Mora, “A Low Voltage, Dynamic, Non-inverting, Synchronous Buck-Boost Converter for Portable Applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp.443-452, Mar. 2004.
[33] B. Sahu and G.A. Rincon-Mora, “A High Efficiency WCDMA RF Power Amplifier with Adaptive, Dual Mode Buck-Boost Supply and Bias-Current Control,” IEEE Microwave and Wireless Components Letters, vol.17, issue 3, pp. 238-240, Mar. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊