跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡琦
研究生(外文):CHI HU
論文名稱:利用壓力擾動訊號來界定B類粒子快速流體化流域
論文名稱(外文):Characterization of Fast Fluidization Regime of Geldart Group B Particles by Pressure Fluctuation Signals
指導教授:呂理平
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:快速流體化床循環式流體化床
外文關鍵詞:Fast fluidized bedCirculating fluidized bed
相關次數:
  • 被引用被引用:1
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用高7m與內徑0.108m循環式流體化床,以平均粒徑155μm、密度為2615kg/m3之砂為床體粒子。以氣體速度和固體流量兩個操作變數,來界定循環式流體化床中快速流體化區域的操作範圍。以壓力探針測量上升床中之局部壓力及壓差擾動訊號,並經統計方法得到的標準偏差和冪次頻譜密度函數來討論不同流態的特徵。
在固定固體循環量下,漸漸減低氣速,由稀相輸送流態進入快速流體化流態之流域轉變,以床中各段之壓力梯度約相等的氣體流速Uc2作為稀相輸送流態和快速流體化流態之轉換速度。而繼續減低氣速,床中壓降呈現遞增趨勢,當流態由快速流體化進入紊流流態時,其固體循環量無法穩定維持,此時氣體速度Uc1作為快速流體化和紊流流態之轉換速度。
對Geldart B類粒子而言,軸向平均空隙度分佈是隨著表面氣體速度與粒子循環量的變化而變;低固體循環量及高氣體速度下表現單一平均空隙度的分佈,而高固體循環量及低氣體速度下則表現出底部空隙度小頂部空隙度大的單調指數分佈。
以床中兩點間的壓差擾動訊號經冪次頻譜密度函數分析發現,床底所得的頻譜圖隨著流態的不同有明顯能量上的差距,故可以區分在快速流體化、紊流流態及稀相輸送的差別。
The flow characteristics of Geldart group B powder (sand; =155 μm) in fast fluidization bed were investigated by instantaneous pressure signals in a circulating fluidized bed (0.108 m i.d. and 7m height) by using non-mechanical valve (L-vale) to control the flow rate of solid particles.
It was found that for the transition from dilute phase convey to fast fluidization, the transition point was determined by plotting pressure gradients measured both at the top and the bottom of the riser. As the gas velocity is gradually reduced at the fixed solid flux, a critical gas velocity (Uc2)would be reached at which two distinct regions in the riser appear. Further reduction of the gas velocity below Uc2 at the same constant solid flux, a point (Uc1)will eventually be reached when steady operation at the given solid flux becomes impossible. The transition between fast fluidization and turbulent occurred at transition velocity Uc1.
For Geldart group B particles, the axial bed average voidage distribution in the solid riser changes with superficial gas velocity and solid circulation rates. Dilute phase convey appears for low solid circulation rates or high superficial gas velocity, fast fluidization appears for high solid circulation rates or low superficial velocities.
At fast fluidization, the power spectrum density function of differential pressure fluctuation signals in the bottom region of dense phase was well defined. So the region transition from turbulent to dilute phase convey was determined by the power spectrum density function of differential pressure fluctuation signals.
中文摘要…………………………………………………………………………….I
英文摘要...........................................................................................................II
目錄………………………………………………………………………………….III
圖表索引…………………………………………………………………………….V
第一章 緒論………………………………………………………………………1
1-1.前言…………………………………………………………………..1
1-2.循環流體化床的應用與發展………………………………………..2
1-3.研究目的……………………………………………………………..5
第二章 文獻回顧………………………………………………………………….6
2-1.由氣泡床轉變成快速流體化之情形………………………………...6
2-2.快速流體化流態轉變情形…………………………………………...8
2-3.軸向濃度分佈結構描述……………………………………………...13
第三章 實驗裝置與步驟.........................................................................................20
3-1.循環式流體化床的實驗裝置………………………………………...20
3-2.循環式流體化床之實驗步驟………………………………………...28
3-2-1.快速流體化流域界定…………………………………………..28
3-2-2.軸向空隙度分佈………………………………………………..29
3-3.循環式流體化床固體控制元件之操作.........................................30
3-4.壓力擾動訊號處理…………………………………………………...33
3-5.固體流量計流量處理…………………………………………………33
3-6.數據分析……………………………………………………………...33
3-6-1.標準偏差(standard deviation)…………………………………….34
3-6-2.冪次頻譜密度函數(power spectral density function簡稱…….34
P.S.D.F)
3-7.實驗固體粒子性質……………………………………………………35
第四章 結果與討論………………………………………………………………..37
4-1.快速流體化流域的界定………………………………………………..37
4-1-1.快速流體化區域與稀相輸送區域之間的轉換速度界定……...37
4-1-2.快速流體化區域與紊流區域之間的轉換速度界定…………...40
4-1-3.輸送速度Utr的界定…………………………………………….40
4-2.截面平均床空隙度之軸向分佈………………………………………..47
4-2-1.固體循環量對軸向分佈之探討………………………………..47
4-2-2.探討改變粒子儲料量下之軸向分佈…………………………..53
4-3.快速流體化流域的壓力擾動訊號分析………………………………..58
4-3-1.單點壓力擾動訊號分析………………………………………..58
4-3-2.兩點間壓力擾動訊號分析……………………………………..68
第五章 結論……………………………………………………………………….79
第六章 符號說明………………………………………………………………….81
第七章 參考文獻………………………………………………………………….84
第八章 附錄.............................................................................................................87
附錄A.衝擊式固體流量計操作原理說明………………………………...87
附錄B.衝擊式固體流量計校正說明……………………………………...89
附錄C. Labview數據截取程式…………………………………………...90
Adanez, J., L. F. de Diego and P. Gayan, “Transport Velocities of Coal and Sand Particles”, Powder Technol. 77, 61-68 (1993).

Bai, D., Y. Jin and Z. Yu, “Flow Regimes in Circulating Fluidized Beds”, Chem. Eng. Technol., 16, 307-313 (1993).

Bai, D. R., Y. Jin, Z. Q. Yu and J. X. Zhu, “The Axial Distribution of The Cross-sectionally Average Voidage In Fast Fluidized Beds”, Powder Technol., 71, 51-58 (1992).

Bi, H. T. and J. Zhu, “Static Instability Analysis of Circulating Fluidized Bed and the Concept of High Density Riser”, AIChE J., 39, 1272-1280 (1993).

Bi, H. T. and J. R. Grace, “Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport”, Int. J. Multiph. Flow, 21,1229-1236 (1995).

Geldart, D., “Type of Gas Fluidization”, Powder Tcehnol., 7, 285-292 (1973).

Grace, J. R., “Contacting Modes and Behaviour Classification of Gas-Solid and Other Two-Phase Suspensions”, Can. J. Chem. Eng., 64, 353-363 (1987).

Horio, M., H. Isbii and M. Nishimuro, “On the Nature of Turbulent and Fast-Fluidized Beds”, Power Technol., 70, 229-236 (1992).

Knowlton, T. M., “Solid Transfer in Fluidized Systems”, in Gas Fluidization Technology, D. Geldart, Eds., pp. 341-414, Wiley, New York (1986).

Knowlton, T. M. and I. Hirsan, “L-valve Characterized for Solids Flow”, Hydrocarbon Processing, March, 149-156 (1978).

Kunii, D. and O. Levenspiel, “Fluidization Engineering”, Butterworth-Heinemann, Boston, MA, U.S.A. (1991).
Leung, L. S., “A Quantitative Design Procedure for Vertical Pneumatic Conveying Systems”, Ind. Eng. Chem. Proc. Des. Dev., 15, 552-557(1976).

Li, J., Y. Tung and M. Kwauk, “Axial Voidage Profile of Fluidized Beds in Different Operating Regions”, in “Circulating Fluidized Bed Technology II”, P. Basu and J. F. Large, Eds., pp. 193-203, Pergamon Press, Oxford (1988).

Namkung, W., S. W. Kim and S. D. Kim, “Flow Regimes and Axial Pressure Profiles in a Circulating Fluidized Bed”, Chem. Eng. J., 72, 245-252 (1999).

Perales, J. F., T. Coll., M. F. Llop., L. Puigjaner., J. Arnaldos and J. Casal, “ On the Transition From Bubbling to Fast Fluidization Regimes“, in “Circulating Fluidized Bed Technology III”, P. Basu, M. Horio and M. Hastami, eds., p. 73-78, Pergamon press, Oxford, Great Britain (1991).

Schwieger, B., “Fluidized-Bed Boilers Achieve Commercial Status Worldwide ”, Power, February, S1-S16 (1985).

Takeuchi, H., T. Hirama, T. Chiba, J. Biswas and L. S. Leung, “A Quantitative Definition and Flow Regime Diagram for Fast Fluidization”, Powder Technol., 47, 195-199 (1986).

Weinstein, H., M. Meller., M. J. Shao and R. J. Parisi, “The Effect of Particle Density on Holdup in a Fast Fluidized Bed”, AIChE. Symp. Ser., vol. 80, no. 234, 52-59 (1984).

Yerushalmi, J. and A. Avidan, “High-Velocity Fluidization”, in “Fluidization”, J. F. Davidson, R. Clift and D. Harrison, Eds., pp. 225-291, Academic Press, London, GB (1986).

Yerushalmi, J. and N. T. Cankurt, “Further Studies of the Regimes of Fluidization”, Powder Technol., 24, 187-205 (1979).

Yerushalmi, J., N. T. Cankurt., D. Geldart and B. Liss, “Flow Regime in Vertical Gas-Solid Contact System”, AIChE Symp. Ser., vol. 74, no. 176, 1-13 (1978).

白丁榮、金涌和俞芷青, “循環流態化:(VI)反應器行為及其模式”, 化學反應工程與工藝, 8(3), 302-313(1992).

白丁榮、金涌和俞芷青,“循環流態化(II):氣-固流動規律”, 化學反應工程與工藝, 7(3), 303-317(1991)

白丁榮、金涌、俞芷青和姚文虎, “快速流態化兩通道模型”, 化工學報, 第一期, 10 (1990).

李靜海,“兩相流多尺度作用模型和能量最小方法”, 博士學位論文, 159-163. (1987). [引用自金涌、祝京旭、汪展文和俞芷青, ”流態化工程原理”, 清華大學出版社, 126 (2001).]

陳靖良,”循環流體化床中氣固流動現象及床-壁間熱傳導之研究”, 台灣大學化學工程研究所博士學位論文, (1991).

黃文濬, “循環式流體化床之壓力擾動訊號分析”, 台灣大學化學工程研究所碩士學位論文, (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 20.張瓊穗(2004),「資訊融入專題式學習之教學初探」,教育研究月刊,第117期,頁107-116。
2. 19.徐新逸(2003),「數位學習課程發展模式初探」,教育研究月刊,
3. 16.周斯畏(1999),「網路科技對教育的影響-學習環境、學習型式、師生互動、教學內容的探討」,中華管理評論,第3期,頁89-96。
4. 14.林奇賢、馬榮燦、林志能(1999),「網路學習環境的設計與應用」,資訊與教育,第67期,頁34-50 。
5. 12.岳修平(1999),「網路教學於學校教育之應用」,課程與教學季刊,第2卷,第4期,頁61-76。
6. 10.吳天方、樊學良、張柏紳(2003),「建構中學E-Learning環境之策略:由競爭力之觀點出發」,教育資料與研究,第54期,頁87-94。
7. 9.吳莉欽(2002),「電腦網路學習環境的理念與問題」,教育資料與圖書館學,第39卷,第4期,頁441-455。
8. 3.王健華(2003),「從數位學習談國內教育科技的發展」,教育研究月刊,第116期,頁5-14。
9. 古正美〈定義大乘及研究佛性論上的一些反思〉台北:佛學研究中心學報第三
10. 32.顏榮泉(1995),「媒體發展與遠距學習」,視聽教育雙月刊,第37卷,第4期,頁12-19。
11. 30.鄭夙珍(2002),「小組探究敎學結合網路學習成效初探」,教育研究資訊,第10卷,第5期,頁111-136。
12. 22.張基成(1997),「開發思考與創造之知識建構工具與認知學習環境之探討:電腦的革新與應用」,教學科技與媒體,第33期,頁36-45。
13. 28.楊家興(1999),「虛擬學校:資訊網路下整合性的教學環境」,教學科技與媒體,第47期,頁12-23。
14. 25.黃雅萍(2004),「數位學習產業人才培育之內涵分析與探討」,教育研究月刊,第118期,頁108-119。
15. 杜正民〈當代如來藏學的開展與問題〉台北:佛學研究中心學報 :1998年 7 月