跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張涵婷
研究生(外文):Han-TingChang
論文名稱:以厚膜製程改善含氧感知器感測性能之研究
論文名稱(外文):Sensing Improvement of Oxygen Sensors using Thick Film Processing
指導教授:方冠榮
指導教授(外文):Kuan-Zong Fung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:80
中文關鍵詞:氣體感知器厚膜製成導電氧化物
外文關鍵詞:oxygen sensorsthick film technologyLSM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含氧感知器為噴射引擎汽機車關鍵性零組件之一,其中牽涉精密陶瓷技術與電化學原理。傳統錐狀氧氣感知器電解質厚度約1000μm,加熱器升溫時間較長,利用厚膜技術可將電解質厚度降至僅200μm,大幅降低加熱所需時間,可有效提升元件成品性能。本論文的主軸是以積層陶瓷厚膜技術(包括刮刀成型、熱壓疊層、網印法等)製備平板電壓式含氧感知器,主要基材為電解質釔安定氧化鋯(6mol% yttria-stabilized zirconia, 6YSZ) 。經由不同的疊壓與緻密化燒結參數探討各層厚膜間之匹配性以及微結構之影響。主要的目標為降低元件製作成本,以導電氧化物La0.8Sr0.2MnO3取代鉑(Pt)陰極,並以複合陰極方式延伸三相界,藉以降低元件之響應時間。
本實驗為了製作完整含氧感知器,首先將薄帶以不同疊壓溫度以及時間比較疊層效果,在高於黏結劑Tg溫度時,可使薄帶流動性增加且有效軟化以利於界面緊密接合,以75℃持壓20MPa、20分鐘後可將薄帶結合,無明顯界面縫隙殘留。進行緻密化燒結時,胚體於脫膠以及空氣通道層完全分解過程會產生劇烈反應,部分溫度區間有大量氣體釋放,是以控制胚體燒結之升溫速率以避免破裂現象發生。
接著,改善加熱體設計圖樣降低胚體熱應力集中情形,提升元件使用良率,使其得以穩定升溫並具有良好熱循環性能。以模擬廢氣測試感知器性能,並與市售感知器比較其響應時間穩定電壓之不同。
此外,La0.8Sr0.2MnO3為中溫燃料電池常用之陰極材料,其熱膨脹係數與YSZ接近,且具有氧氣還原的高活性,隨著貴金屬成本日趨上升,以LSM取代Pt陰極可有效降低材料成本。LSM與YSZ在高溫共燒時會於兩相界面生成導電性極低之第二相La2Zr2O7,於兩相界面網印一層緻密之隔絕薄膜可抑制原子擴散減少反應相生成。LSM陰極於許多研究中,普遍觀察到具有較大的極化阻抗,將影響感知器元件性能。

The zirconia oxygen sensors (or lambda sensors) for emission control of automobiles commonly use a conical thimble design. However, the thimble-type lambda sensors are approximately 1 cm wide in diameter and 5 cm long. It takes 30 sec for heating the zirconia solid electrolyte to the desired operation temperature(~400℃). With new processing technologies, namely the co-firing of the laminate between the green sheets by tape casting, the thickness of (planar) sensors may be reduced to 2mm. The size of planar oxygen sensor in the study is 50mm x 6mm x 2mm. The planar-type oxygen sensor provides the advantages of less weight, shorter warm-up time, smaller size and faster response time.
In this study, the thick film technology, including tape casting, screen printing electrode for heater patterns, laminating and co-sintering processes, is used to fabricate planar lambda oxygen sensors. The lamination of green tapes was conducted at 75℃with pressure 〈50MPa. La0.8Sr0.2MnO3 has been considered for new cathode materials to replace Pt since it has adequate electrical property and nearly the same coefficient of thermal expansion as YSZ. However, the results of this work show that oxygen sensor with LSM cathode exhibits longer response time than standard oxygen sensor using Pt electrode.

中文摘要 I
英文摘要 III
致謝 IX
總目錄 X
圖目錄 XIII
表目錄 XVII
第一章 緒論 1
第二章 理論基礎與文獻回顧 3
2-1含氧感知器之種類與原理 3
2-1-1電阻式 3
2-1-2電壓式 5
2-1-3極限電流式 11
2-1-4含氧感知器之應用 15
2-2含氧感知器之組件與材料 16
2-2-1 釔安定氧化鋯 16
2-2-2鈣鈦礦結構氧化物 18
2-3厚膜製程技術 19
2-3-1刮刀成型 19
2-3-2網印 22
2-3-3疊層 23
2-4研究動機 24
第三章 實驗步驟與方法 25
3-1實驗流程 25
3-2 實驗藥品選用 26
3-3 粉末合成 27
3-3-1以固相反應法合成La0.8Sr0.2MnO3 27
3-4 刮刀成型及網印漿料之配製 28
3-4-1刮刀成型漿料 28
3-4-2網印電極之漿料 29
3-5網版圖樣 30
3-5-1白金加熱體 30
3-5-2 電極 30
3-6性質測試與分析 32
3-6-1 X光繞射分析(XRD) 32
3-6-2 掃描式電子顯微鏡(SEM) 32
3-6-3 TG分析 32
3-6-4 紅外線熱顯像儀分析 33
3-6-5 氣體感測元件分析 33
第四章 結果與討論 35
4-1陶瓷疊層技術之開發 35
4-1-1熱壓疊層其溫度及時間對疊層坯體性質之影響 35
4-1-2疊層胚體燒結參數之分析 40
4-1-3疊層胚體燒結後顯微結構之分析 44
4-2 一體式之高性能加熱器 47
4-2-1 鉑加熱體、絕緣層與YSZ本體共燒結性質之研究 47
4-2-2加熱器圖樣對加熱性質之影響 51
4-2-3循環加熱耐性試驗 57
4-3導電氧化物鍶摻雜錳酸鑭陰極之研究 59
4-4含氧感知器性能之測試與分析 61
4-4-1氣體流經感知器之溫度與流量對氣體感測之影響 61
4-4-2以LSM為陰極材料含氧感知器性能之分析 72
第五章 結論 76
參考文獻 78

[1]H. Meixner*, U. Lampe, “Metal oxide sensors, Sensors and Actuators B 33 (1996) 198-202.
[2]R. Ramamoorthy, P.K. Dutta, S.A. Akbar, “Oxygen sensors: Materials, methods, designs and applications. Journal of Materials Science 38 (2003)4271-4282.
[3]E. Ivers-Tiffee, K.H. Hardtl, W. Menesklou, J. Riegel“Principles of solid state oxygen sensors for lean combustion gas control.ElectrochemicaActa 47 (2001)807-814.
[4]R.E. Mistler, D.J. Shanefield, R.B. Runk, Foil Casting of Ceramics, Ceramic Processing Before Firing, Wiley, New York, 1978, p. 411.
[5]J. Riegel, H. Neumann, H.M. Wiedenmann, “Exhaust gas sensors for automotive emission control. Solid State Ionics 152-153 (2002) 783-800.
[6]Francis Menil, Veronique Collard, Claude Lucat, “Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines. Sensors and Actuators B 67 (2000)1-23.
[7]Ralf Moos, “A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics. Int. J. Appl. Ceram. Technol., 2[5]401-403(2005).
[8]N.Q. Minh, “Ceramic fuel cells, J. Am. Ceram. Soc. , 76[3](1993)563-588.
[9]Sotomitsu Ikeda, Osamu Sakurai, KeizoUematsu, NobuyasuMizutani, Masanori Kato, “Electrical conductivity of yttria-stabilized zirconia single crystals. Journal of Materials Science 20 (1985) 4593-4600.
[10]P. Timakul, S. Jinawath, P. Aungkavattana, “Fabrication of electrolyte materials for solid oxide fuel cells by tape-casting. CeramicsInternational 34 (2008) 867-871.
[11]Shoji Otoshi, Hirokazu Sasaki, Hisao Ohnishi, Minoru Hase, KimioIshimaru, MasamichiIppommatsu, “Changes in the Phases and Electrical Conduction Properties of (La1-xSrx)1-yMnO3-δ. J. Electrochem. Soc., Vol. 138 (1991).
[12]A. Chakraborty, P.S. Devi, H.S. Maiti, “Preparation of La1-xSrxMnO3(0≤x≤0.6) powder by autoignition of carboxylate. Mater. Lett. 20 (1994) 63-69.
[13]M. Godickemeier, K. Sasaki, L.J. Gaukler, I. Riess, “Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes. Solid State Ionics 86-88 (1996) 691-701.
[14]何建成,蔡聰麟,“積層陶瓷電容器製程技術簡介I.生胚製成,華新科技研發部。
[15]C. McDonagh, P. Bowe, K. Mongey, B.D. MacCraith, “Characterisation of porosity and sensor response times of sol-gel-derived thin films for oxygen sensor application. J. Non-Crystalline Solids 306(2002)138-148.
[16]Rajesh V. Shende, Melissa Kline, Stephen J. Lombardo, “Effects of supercritical extraction on the plasticization of poly(vinyl butyral) and dioctyl phthalate films. J. of Supercritical Fluids 28 (2004) 113-120.
[17]Loey A. Salam, Richard D. Mattews, Hugh Robertson, “Pyrolysis of polyvinyl butyral(PVB) binder in thermoelectric green tapes. Journal of the European Ceramic Society 20(2000) 1375-1383.
[18]Rajesh V. Shende and Stephen J. Lombardo, “Determination of binder decomposition kinetics for specifying heating parameter in binder burnout cycles. J. Am. Ceram. Soc. 85[4]780-86(2002).
[19]Wenxia Li, Alvin Feingold, PonnusamyPalanisamy, and Gerald Lorenz, “Co-sintering zirconia electrolyte and insulator tapes for sensor applications. J. Am. Ceram. Soc., 95[12]3815-3820(2012).
[20]Qibing Chang, Lei Zhang, Xingqin Liu, Dingkun Peng, GuangyaoMeng, “Preparation of crack-free ZrO2 membrane on Al2O3 support with ZrO2-Al2O3 composite intermediate layers. Journal of Membrane Science 250 (2005) 105-111.
[21]Yaohui Zhang, Xiqiang Huang, Zhe Lu, Zhiguo Liu, XiaodongGe, Jiahuan Xu, Xianshuang Xin, XueqingSha, Wenhui Su,“A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing. Journal of Power Sources 160 (2006) 1065-1073.
[22]Yaohui Zhang, Xiqiang Huang, Zhe Lu, XiaodongGe, Jiahuan Xu, Xianshuang Xin, XueqingSha, Wenhui Su, “Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs. Solid State Ionics 177 (2006) 281-287.
[23]R.D. Bagley, I.B. Cutler, D.L. Johnson, “Effect of TiO2 on initial sintering of Al2O3. J. Am. Ceram. Soc., 53[3] (1970) 136-141.
[24]K. Hamano, C.s. Hwang, Z.E. Nakagawa, Y. Ohya, “Effect of TiO¬2 on sintering of Alumina Ceramics.窯協,94[5] (1986) 505-511.
[25]Willard W. Pulkrabek原著,李冠宗、呂有豐譯,「內燃機」,高立圖書有限公司(1997)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top