跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾天伸
研究生(外文):Tien-Shen Chung
論文名稱:基因調控網路內在雜訊之研究
論文名稱(外文):Intrinsic noise in genetic regulation networks
指導教授:黃敏章
指導教授(外文):Ming-Chang Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:45
中文關鍵詞:基因調控網路雜訊
外文關鍵詞:noisegenetic regulation networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的內容著重於研究基因調控網路中、轉錄和轉譯的過程內在雜訊的探討,不包含外在環境因素的影響。基因調控網路中蛋白質或訊息RNA的合成可以用rate equations來描述、此方程式為一巨觀之方程式。欲探討基因調控網路中內在雜訊的行為、首先我們的方法是從rate equations中的rate constants出發、再加上隨機過程的概念而寫出Master equation、進而利用Ω- expansion的技巧對平衡點做泰勒級數展開,將Master equation轉換成線性Fokker-Planck equation。
我們利用計算所得到的Fokker-Planck equation來分析與探討基因調控網路中蛋白質或訊息RNA濃度的起伏與變化。而蛋白質或訊息RNA濃度的變化與本篇論文中所探討的基因調控網路中內在雜訊有著密切的關聯性。基於此關聯性、我們再利用Fokker-Planck equation計算出variance和covariance。藉由此結果、我們將雜訊的強度用Fano Factor來表示、此定義為variance除以平衡點的值。
因此、藉由改變不同參數與所得到Fano Factor的值,我們去分析與探討不同參數對雜訊的影響。而此影響我們在論文裡有詳細的討論。
In this thesis, we investigate the intrinsic noise in transcription and translation level of genetic regulation networks without environmental conditions. The genetic regulation networks can be mathematically described by rate equations. To obtain the stochastic features of the system, the macroscopic rate equation is first rewritten as the stochastic master equation, and then expansion method is used to obtain the linear noise Fokker-Planck equation. We use the linear noise Fokker-Planck equation to analyze the stochastic fluctuations in the regulation networks of single gene and toggle switch. The noise strength is measured by Fano Factor which is defined as variance over mean, and the correlation of noise is also analyzed. The effect of regulation strength on the characteristics of noises and discussed.
Contents

Abstract (in Chinese) I
Abstract (in English) II
Acknowledgements III
Contents IV
List of Figures VI
List of Tables VIII

1 Introduction:Biological systems 1
1.1 Basic of DNA molecules 1
1.2 Transcription of genes to produce messenger RNA 3
1.3 Translation of protein 5
2 Genetic Regulation Networks 6
2.1 Control of gene expression 7
2.2 Basic gene expression 7
2.3 Regulation of single gene expression 9
2.4 Genetic toggle switch 10
2.5 Mathematical analysis of equilibrium stable points 11
3 Noise Propagation in Genetic Regulation Networks 14
3.1 The stochastic Master equation 15
3.2 Linear noise Fokker-Planck equation 16
3.3 Steady state statistics and noise propagation 19
3.4 Asymptotic solutions as t →∞ 24
3.5 Noise strength and correlation 25
4 Conclusion 26
4.1 Regulation network of single gene 26
4.2 Regulation network of toggle switch 27
Bibliography 36



List of Figures

Fig 1.1 The backbone of each DNA strand is contained of sugars and phosphates, and the four bases are A, T, G, C 2
Fig 1.2 Part of double strand DNA with A paired with T and G paired with C. Three
hydrogen bonds between G, C and two hydrogen bonds between A, T 3
Fig 1.3 (a) part of double strand DNA (b) pull strands apart in the transcription process (c) RNA strand is synthesized 4
Fig 1.4 Gene and its promoter 5
Fig 1.5 The central dogma of gene expression 5
Fig 2.1 An operon may have one or more genes which are transcribed into one messenger RNA. The operator region contains of repressor and activator binding region 7
Fig 2.2 Basic gene expression 8
Fig 2.3 Repressor binds on the operator site 9
Fig 2.4 Genetic toggle switch 10
Fig 2.5 Graphic showing three equilibrium points of genetic toggle switch. In equilibrium, we set up dx1/dt = dx2/dt=0 and find the equilibrium points. For α1 =156.25,α2 =15.6,β=2.5 and γ=1, we can obtain three equilibrium points. The three equilibrium points are point A (155.7634, 0.0995), point B (0.3324, 11.7080) and point C (1.3165, 6.7342). The point A and the point B are both stable with its eigenvalue are negative. The point C is an unstable point with its eigenvalue is positive 13
Fig 4.1 The Hill parameter β is increased and dissociation constant is fixed as Kd=800. The results of ν2 and R12 are both decreased 30
Fig 4.2 The dissociation constant Kd is increased and the Hill parameter is fixed as β=2. The results of ν2 and R12 are both increased 31
Fig 4.3 ν1 as a function of β and ν2 as a function of β, for the stable point A (155.76, 0.0995) 32
Fig 4.4 R12 as a function of β, for the stable point A (155.76, 0.0995) 33
Fig 4.5 ν2 as a function of β and ν2 as a function of β, for the stable point B (0.3324, 11.708) 34
Fig 4.6 R12 as a function of β, for the stable point B (0.3324, 11.708) 35



List of Tables

Table 1 Parameter values used for single-gene auto regulatory network 28
Table 2 Parameter values used for toggle switch 29
[1] David P. Clark Lonnie D.Russell, Molecular biology 2/E (Cache River Press)
[2] Rodney Boyer, Concepts in biochemistry 2/E (Benjamin Cummings )
[3] C.R. Calladine, Horace R. Drew. Understanding DNA 2/E (ACADEMIC PRESS)
[4] M.L. Simpson et al, PNAS 100 (2003) 4551-4556.
[5] M. Thattai and A. van Oudenaarden, Proc. Natl. Acad. Sci. U.S.A. 98, 8614 (2001).
[6] E. M. Ozbudark, M. Thattai, I. Kuster, A. D. Grossman, and A. van Oudenaarden, Nat. Genet. 31, 69 (2000).
[7] Mads Kærn Timothy C. Elston William J. Blake & James J. Collins Nature Reviews Genetics 6, 451 - 464 (2005).
[8] Matthew Scott, Brian Ingalls, Mads Kærn, CHAOS 16, 026107 (2006)
[9] T. S. Gardner, C. R. Cantor, and J. J. Collins, Nature (London) 403, 339 (2000).
[10] Joshua L. Cherry, Frederick R. Adler. J. theor. Biol. (2000) 203, 117-113
[11] Ellen M. Judd, Michael T. Laub, Harley H. McAdams. BioEssays 22:507-509 (2000)
[12] John Bechhoefer. Rev. Mod. Phys., Vol. 77, No. 3, July 2005
[13] 7.81/8.591/9.531 Systems Biology – A. van Oudenaarden MIT 2004.
[14] Y. Tao, Jia, Y. and Dewey, T. G. Journal of Chemical Physics, 122, 124108 (2005)
[15] N. G. van Kampen, Stochastic Process Theory in Physics and Chemistry (North-Holland, Amsterdam, 1992).
[16] Y. Tao, J. Theor. Biol. 229, 147 (2004).
[17] Johan Elf, Måns Ehrenberg. Genome Res. 2003 13: 2475-2484
[18] Sara Hooshangi, Ron Weiss. CHAOS 16, 026108 (2006)
[19] Johan Paulsson. NATURE , VOL 427, 29 JANUARY 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉婉珍(2001)。美術館教育人員的專業特質與成長。博物館學季刊,15(2),63-74。
2. 楊冠政(1995)。環境教育發展史。教育資料集刊。台北市:國立教育資料館。
3. 楊冠政(2002)。環境倫理-環境教育的終極目標。環境教育學刊,1,1-12。
4. 劉婉珍(2004b)。誰是博物館教育人員,他們需要什麼?:初探博物館教育人員專業生涯規劃發展現況與需求。博物館學季刊,18(3),97-124。
5. 簡茂發、李虎雄等人(1997)。中小學教師應具備的基本素養。教育研究資訊,5(3),1-13
6. 劉婉珍(2004a)。虛與實之間:博物館教育改革的契機。博物館學季刊,18(1),19-27。
7. 黃鈺琴(2004)。教改之下,美術館你的位置在哪裡?。博物館學季刊,18(1), 41-53。
8. 許功明、劉幸真(1998)。博物館參觀經驗之比較-以省美館與科博館為例。博物館學季刊,12(3),3-34。
9. 靳知勤(2000)。教師參與科學博物館短期環境教育專題研習的影響—三位國小自然科個案教師的比較研究。科學教育學刊,8(3),287-316。
10. 許功明(2001)。博物館教育人員定位之探討—從專業談起。博物館學季刊,15(2),49-61。
11. 許世璋(2003)。大學環境教育課程對於環境行動與其它環境素養變項之成效分析。科學教育學刊,11(1),97-119。
12. 林勇、粘錦成(2000)。能力本位教育與傳統教育之差異。人力培訓專刊,2,20-24。
13. 靳知勤(1999)。科學博物館教育人員在職訓練與其專業能力之養成。博物館學季刊,13(2),91-99。
14. 汪靜明(1989)。社會教育機構推行環境教育之理念基礎。環境教育季刊,4,15-22。
15. 劉憶諄(2006)。自然史博物館之蒐藏實踐。博物館學季刊,20(2),47-65。