|
參考文獻
[1]Ikeda, T., 1990. Fundamentals of Piezoelectricity. Oxford University Press, Oxford. [2]周卓明, 2003. 壓電力學. 全華, 台北. [3]張福學主編, 2001. 現代壓電學. 科學出版社, 北京. [4] Gandhi, M.V., Thompson, B.S., 1992. Smart Materials and Structures. Chapter 5: Piezoelectric materials. Chapman & Hall, London. [5]Uchino, K., 1997. Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers, Boston. [6]Moulson, A.J., Herbert, J.M., 1990. Electroceramics. Chapter 6: Piezoelectric ceramics. Chapman & Hall, London. [7]楊大智主編, 2002. 智能材料與智能系統. 天津大學出版社, 天津. [8]IEEE, 1988. IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987, The Institute of Electrical and Electronics Engineers, Inc., New York. [9]Haertling, G.H., 1999. Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 82(4), 797-818. [10]Yang, J., Hu, Y., 2004. Mechanics of electroelastic bodies under biasing fields. Applied Mechanics Reviews, 57, 173-189. [11]Neelakanta, P.S., 1995. Handbook of Electromagnetic Materials. Chapter 12: Ferroelectric materials. CRC Press, New York. [12]Jaffe, B., Cook, W.R., Jaffe, H., 1971. Piezoelectric Ceramics. Academic Press Limited, India. [13]Cady, W.G., 1946. Piezoelectricity. McGraw-Hill, New York. [14] Tiersten, H.F., 1969. Linear Piezoelectric Plate Vibrations. Plenum Press, New York. [15] Sashida, T., Kenjo, T., 1993. An Introduction to Ultrasonic Motors. Chapter 3: The piezoelectric element and vibrator. Clarendon Press, Oxford. [16]鄭世裕, 1994. 陶瓷技術手冊. 第14章: 壓電陶瓷. 汪建民主編, 中華民國產業科技發展協進會, 台北. [17]Nye, J.F., 1985. Physical Properties of Crystals. Clarendon Press, Oxford. [18]Van Suchtelen, J., 1972. Product properties: a new application of composite materials. Philips Research Reports, 27, 28-37. [19]Van Den Boomgaard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I., 1974. An in situ grown eutectic magnetoelectric composite material. Part I: Composition and unidirectional solidification. Journal of Materials Science, 9, 1705-1709. [20]Van Run, A.M.J.G., Terrell, D.R., Scholing, J.H., 1974. An in situ grown eutectic magnetoelectric composite material. Part II: Physical properties. Journal of Materials Science, 9, 1710-1714. [21]Echigoya, J., Hayashi, S., Obi, Y., 2000. Directional solidification and interface structure of BaTiO3-CoFe2O4 eutectic. Journal of Materials Science, 35, 5587-5591. [22]Zheng, H. et al., 2004. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science, 303, 661-663. [23]黃錦煌, 2002. 磁性技術手冊. 第34章:磁電材料及其應用. 金重勳主編, 中華民國磁性技術協會, 新竹. [24]Engdahl, G., 2000. Handbook of Giant Magnetostrictive Materials. Academic Press, San Diego. [25]金重勳, 施智超, 2002. 磁性技術手冊. 第31章:磁伸縮材料及應用. 金重勳主編, 中華民國磁性技術協會, 新竹. [26]Brown, Jr., W.F., 1966. Magnetoelastic Interaction. Springer-Verlag, New York. [27]Neelakanta, P.S., 1995. Handbook of Electromagnetic Materials. Chapter 14: Ferromagnetic materials. CRC Press, New York. [28]Bozorth, R.M., Tilden, E.F., Williams, A.J., 1955. Anisotropy and magnetostriction of some ferrites. Physical Review, 99(6), 1788-1798. [29]Hellwege, K.H. (Eds.), 1970. Landolt-Börnstein - Numerical Data and Functional Relationships in Science and Technology. New series, Group III, Volume 4: Magnetic and other properties of oxides and related compounds. Springer-Verlag, Berlin. [30]山口喬, 柳田博明, 岡本祥一, 近桂一郎, 1985. 磁性陶瓷. 黃忠良譯(2001), 復漢, 台南. [31]Berlincourt, D.A., Curran, D.R., Jaffe, H., 1964. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics, Vol. I-A, Mason, W.P. (Ed.), Academic Press, New York. [32]IEEE, 1991. IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature. ANSI/IEEE Std 319-1990, The Institute of Electrical and Electronics Engineers, Inc., New York. [33]Nan, C.W., 1994. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B, 50(9), 6082-6088. [34]Harshe, G., Dougherty, J.P., Newnham, R.E., 1993. Theoretical modelling of 3-0/0-3 magnetoelectric composites. International Journal of Applied Electromagnetics in Materials, 4, 161-171. [35]Huang, J.H., Kuo, W.S., 1997. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. Journal of Applied Physics, 81(3), 1378-1386. [36]Huang, J.H., Chiu, Y.H., Liu, H.K., 1998. Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions. Journal of Applied Physics, 83(10), 5364-5370. [37]Benveniste, Y., 1995. Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Physical Review B, 51(22), 16424-16427. [38]Li, J.Y, Dunn, M.L., 1998. Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. Journal of Intelligent Material Systems and Structures, 9, 404-416. [39]Avellaneda, M., Hasrshe, G., 1994. Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites. Journal of Intelligent Material Systems and Structures, 5, 501-513. [40]Harshe, G., Dougherty, J.P., Newnham, R.E., 1993. Theoretical modelling of multilayer magnetoelectric composites. International Journal of Applied Electromagnetics in Materials, 4, 145-159. [41]Pan, E., Heyliger, P.R., 2003. Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures, 40, 6859-6876. [42]Ryu, J., Priya, S., Carazo, A.V., Uchino, K., 2001. Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/Terfenol-D laminate composites. Journal of the American Ceramic Society, 84(12), 2905-2908. [43] Pao, Y.H., Yeh, C.S., 1973. A linear theory for soft ferromagnetic elastic solids. International Journal of Engineering Science, 11, 415-436. [44] Lin, C.B., Yeh, C.S., 2002. The magnetoelastic problem of a crack in a soft ferromagnetic solid. International Journal of Solids and Structures, 39, 1-17. [45]Tranter, C.J., 1948. The use of the Mellin transform in finding the stress distribution in an infinite wedge, Quarterly Journal of Mechanics and Applied Mathematics, 1, 125-130. [46]Williams, M.L., 1952. Stress singularities resulting from various boundary conditions in angular corners of plates in tension. ASME Journal of Applied Mechanics, 19, 526-528. [47]Hein, V.L., Erdogan, F., 1971. Stress singularities in a two-material wedge. International Journal of Fracture Mechanics, 7, 317-330. [48]Bogy, D.B., 1971. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. ASME Journal of Applied Mechanics, 38, 377-386. [49]Dempsey, J.P., Sinclair, G.B., 1981. On the singular behavior at the vertex of a bi-material wedge. Journal of Elasticity, 11, 317-327. [50]Theocaris, P.S., 1974. The order of singularity at a multi-wedge corner of a composite plate. International Journal of Engineering Science, 12, 107-120. [51]Bogy, D.B., 1968. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. ASME Journal of Applied Mechanics. 35, 460-466. [52]Kuo, M.C., Bogy, D.B., 1974. Plane solutions for traction problems on orthotropic unsymmetrical wedges and symmetrically twinned wedges. ASME Journal of Applied Mechanics, 41, 203-208. [53]Delale, F., 1984. Stress singularities in bonded anisotropic materials. International Journal of Solids and Structures, 20, 31-40. [54]Ma, C.C., Hour, B.L., 1989. Analysis of dissimilar anisotropic wedge subjected to antiplane shear deformation. International Journal of Solids and Structures, 25, 1295-1309. [55]Hwu, C., Ting, T.C.T., 1990. Solutions for the anisotropic elastic wedge at critical wedge angles. Journal of Elasticity, 24, 1-20. [56]Lin, Y.Y., Sung, J.C., 1998. Stress singularities at the apex of a dissimilar anisotropic wedge. ASME Journal of Applied Mechanics, 65, 454-463. [57]Chen, H.P., 1998. Stress singularities in anisotropic multi-material wedges and junctions. International Journal of Solids and Structures, 35, 1057-1073. [58]Chue, C.H., Liu, C.I., 2001. A general solution on stress singularities in anisotropic wedge. International Journal of Solids and Structures, 38, 6889-6906. [59]Chue, C.H., Liu, C.I., 2002. Disappearance of free-edge stress singularity in composite laminates. Composite Structures, 56, 111-129. [60]Chue, C. H., Liu, C.I., 2002. Stress singularities in a bimaterial anisotropic wedge with arbitrary fiber orientation. Composite Structures, 58, 49-56. [61]Kargarnovin, M.H., Shahani, A.R., Fariborz, S.J., 1997. Analysis of an isotropic finite wedge under antiplane deformation. International Journal of Solids and Structures, 34, 113-128. [62]Chue, C.H., Liu, W.J., 2004. Comments on “Analysis of an isotropic finite wedge under antiplane deformation”. International Journal of Solids and Structures, 41, 5023-5034. [63]Lucas, R.A., Erdogan, F., 1966. Quasi-static transient thermal stresses in an infinite wedge. International Journal of Solids and Structures, 2, 205-222. [64]Hwu, C., Lee, W.J., 2004. Thermal effect on the singular behavior of multibonded anisotropic wedges. Journal of Thermal Stresses, 27, 111-136. [65]Xu, X.L., Rajapakse, R.K.N.D., 2000. On singularities in composite piezoelectric wedges and junctions. International Journal of Solids and Structures, 37, 3253- 3275. [66]Chue, C.H., Chen, C.D., 2002. Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application to wedge problems. International Journal of Solids and Structures, 39, 3131-3158. [67]Chen, C.D., Chue, C.H., 2003. Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear. International Journal of Solids and Structures, 40, 6513-6526. [68]Chue, C.H., Chen, C.D., 2003. Antiplane stress singularities in a bimaterial piezoelectric wedge. Archive of Applied Mechanics, 72, 673-685. [69]Chue, C.H., Wei, W.B., Liu, T.J.C., 2003. The antiplane electro-mechanical field of a piezoelectric wedge under a pair of concentrated forces and free charges. Journal of the Chinese Institute of Engineers, 26, 575-583. [70]Wei, W.B., Liu, T.J.C., Chue, C.H., 2002. Antiplane electro-mechanical field of a two-piezoelectric wedge under a pair of concentrated forces and free charges. The 26th National Conference on Theoretical and Applied Mechanics, Hu-Wei, Taiwan, R.O.C. [71]Chen, B.J., Xiao, Z.M., Liew, K.M., 2002. Electro-elastic stress analysis for a wedge-shaped crack interacting with a screw dislocation in piezoelectric solid. International Journal of Engineering Science, 40, 621-635. [72]Chen, B.J., Xiao, Z.M., Liew, K.M., 2002. A screw dislocation in a piezoelectric bi-material wedge. International Journal of Engineering Science, 40, 1665-1685. [73]Chung, M.Y., Ting, T.C.T., 1995. Line force, charge, and dislocation in anisotropic piezoelectric composite wedges and spaces. ASME Journal of Applied Mechanics, 62, 423-428. [74]Chung, M.Y., Ting, T.C.T., 1995. Line force, charge and dislocation in angularly inhomogeneous anisotropic piezoelectric wedges and spaces. Philosophical Magazine A, 71, 1335-1343. [75]Erdogan, F., Gupta, G.D., 1975. Bonded wedges with an interface crack under anti-plane loading. International Journal of Fracture, 11, 583-593. [76]Shahani, A.R., Adibnazari, S., 2000. Analysis of perfectly bonded wedges and bonded wedges with an interface crack under antiplane shear loading. International Journal of Solids and Structures, 37, 2639-2650. [77]Shahani, A.R., 2001. A note on the paper “Analysis of perfectly bonded wedges and bonded wedges with an interface crack under antiplane shear loading”. International Journal of Solids and Structures, 38, 5041-5043. [78]Shahani, A.R., 2003. Mode III stress intensity factor for edge-cracked circular shafts, bonded wedges, bonded half planes and DCB’s. International Journal of Solids and Structures, 40, 6567-6576. [79]Kraus, J.D., Fleisch, D.A., 1999. Electromagnetics with Applications. Fifth edition, McGraw-Hill, New York. [80]Cheng, D.K., 1983. Field and Wave Electromagnetics. Addison-Wesley, MA. [81]Landau, L.D., Lifshitz, E.M., 1984. Electrodynamics of Continuous Media. Pergamon press, Oxford. [82]Edminister, J.A., 1993. Theory and Problems of Electromagnetics. Second edition, McGraw-Hill, New York. [83]Sih, G.C., 2002. A field model interpretation of crack initiation and growth behavior in ferroelectric ceramics: change of poling direction and boundary condition. Theoretical and Applied Fracture Mechanics, 38, 1-14. [84]Zuo, J.Z., Sih, G.C., 2000. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theoretical and Applied Fracture Mechanics, 34, 17-33. [85]Sih, G.C., Zuo, J.Z., 2000. Multiscale behavior of crack initiation and growth in piezoelectric ceramics. Theoretical and Applied Fracture Mechanics, 34, 123-141. [86]Shen, S., Nishioka, T., 2000. Fracture of piezoelectric materials: energy density criterion. Theoretical and Applied Fracture Mechanics, 33, 57-65. [87]Soh, A.K., Fang, D.N., Lee, K.L., 2001. Fracture analysis of piezoelectric materials with defects using energy density theory. International Journal of Solids and Structures, 38, 8331-8344. [88]Zhang, T.Y., Gao, C.F., 2004. Fracture behaviors of piezoelectric materials. Theoretical and Applied Fracture Mechanics, 41, 339-379. [89]Zhang, T.Y., Zhao, M., Tong, P., 2002. Fracture of piezoelectric ceramics. Advances in Applied Mechanics, 38, 148-289. [90]Zhang, T.Y., Wang, T., Zhao, M., 2003. Failure behavior and failure criterion of conductive cracks (deep notches) in thermally depoled PZT-4 ceramics. Acta Materialia, 51, 4881-4895. [91] Sosa, H., 1992. On the fracture mechanics of piezoelectric solids. International Journal of Solids and Structures, 29, 2613-2622. [92]Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids, 40, 739-765. [93]Suo, Z., 1991. Mechanics concepts for failure on ferroelectric ceramics. Smart Structures and Materials, AD-Vol. 24/AMD-Vol. 123, ASME, USA. [94]Park, S., Sun, C.T., 1995. Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society, 78(6), 1475-1480. [95]Shindo, Y., Murakami, H., Hiriguchi, K., Narita, F., 2002. Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked-beam methods. Journal of the American Ceramic Society, 85, 1243-1248. [96] Parton, V.Z., 1976. Fracture mechanics of piezoelectric materials. Acta Astronautica, 3, 671-683. [97]Pak, Y.E., 1990. Crack extension force in a piezoelectric material. ASME Journal of Applied Mechanics, 57, 647-653. [98]Zhang, T.Y., Hack, J.E., 1992. Mode-III cracks in piezoelectric materials. Journal of Applied Physics, 71, 5865-5870. [99]Schneider, G.A., Felten, F., McMeeking, R.M., 2003. The electrical potential difference across cracks in PZT measured by Kelvin probe microscopy and the implications for fracture. Acta Materialia, 51, 2235-2241. [100]Chue, C.H., Weng, S.M, 2005. Fracture analysis of piezoelectric materials with an arbitrarily oriented crack using energy density theory. Computers and Structures, 83, 1251-1265. [101]Narita. F., Shindo, Y., Watanabe, K., 1999. Anti-plane shear crack in a piezoelectric layer bonded to dissimilar half spaces. JSME International Journal, 42, 66-72. [102]Li, X.F., Fan, T.Y., 2001. Mode-III interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials. Archive of Applied Mechanics, 71, 703-714. [103]Chen, Z.T., Yu, S.W., Karihaloo, B.L., 1997. Antiplane shear problem for a crack between two dissimilar piezoelectric materials. International Journal of Fracture, 86, L9-L12. [104]Chen, Z.T., Worswick, M.J., 2000. Antiplane mechanical and inplane electric time-dependent load applied to two coplanar cracks in piezoelectric ceramic. Theoretical and Applied Fracture Mechanics, 33, 173-184. [105]Lin, S., Narita, F., Shindo, Y., 2003. Comparison of energy release rate and energy density criteria for a piezoelectric layered composite with a permeable and impermeable crack normal to interface. Theoretical and Applied Fracture Mechanics, 39, 229-243. [106]Li, X.F., Fan, T.Y., 2000. Semi-infinite anti-plane crack in a piezoelectric material. International Journal of Fracture, 102, L55-L60. [107]Li, X.F., Tang, G.J., 2002. Antiplane permeable edge cracks in a piezoelectric strip of finite width. International Journal of Fracture, 118, L45-L50. [108]Li, X.F., Tang, G.J., 2003. Electroelastic analysis of an interface anti-plane shear crack in a layered piezoelectric plate. International Journal of Engineering Science, 41, 1405-1422. [109]Shindo, Y., Tanaka, K., Narita, F., 1997. Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mechanica, 120, 31-45. [110]Narita. F., Shindo, Y., 1998. Anti-plane shear crack growth rate of piezoelectric ceramic body with finite width. Theoretical and Applied Fracture Mechanics, 30, 127-132. [111]Soh, A.K., Fang, D.N., Lee, K.L., 2000. Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. European Journal of Mechanics A/Solids, 19, 961-977. [112]Li, X.F., 2002. Closed-form solution for a piezoelectric strip with two collinear cracks normal to the strip boundaries. European Journal of Mechanics A/Solids, 21, 981-989. [113]Wang, B.L., Noda, N., 2002. Generalized plane problem of a cracked piezoelectric layer bonded to dissimilar layers. Acta Mechanica, 153, 79-88. [114]Lin, S., Narita, F., Shindo, Y., 2003. Electroelastic analysis of a piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix. International Journal of Solids and Structures, 40, 5157-5174. [115]Kumar, S., Singh, R.N., 1996. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings. Acta Materialia, 44, 173-200. [116]Kumar, S., Singh, R.N., 1997. Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials. Materials Science and Engineering, A231, 1-9. [117]Fang, D., Qi, H., Yao, Z., 1998. Numerical analysis of crack propagation in piezoelectric ceramics. Fatigue & Fracture of Engineering Materials & Structures, 21, 1371-1380. [118]Shang, F., Kuna, M., Abendroth, M., 2003. Finite element analyses of three-dimensional crack problems in piezoelectric structures. Engineering Fracture Mechanics, 70, 143-160. [119]Gruebner, O., Kamlah, M., Munz, D., 2003. Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Engineering Fracture Mechanics, 70, 1399-1413. [120]Parton, V.Z., Kudryavtsev, B.A., 1988. Electromagnetoelasticity. Gordon and Breach Science Publishers. [121]Wang, B.L., Mai, Y.W., 2004. Impermeable crack and permeable crack assumptions, which one is more realistic? ASME Journal of Applied Mechanics, 71, 575-578. [122]Deeg, W., 1980. The Analysis of Dislocation, Crack and Inclusion in Piezoelectric Solids. Ph.D. thesis, Stanford University, Stanford, CA. [123]Hao, T.H., Shen, Z.Y., 1994. A new electric boundary condition of electric fracture mechanics and its applications. Engineering Fracture Mechanics, 47, 793-802. [124]Ou, Z.C., Chen, Y.H., 2003. Discussion of the crack face electric boundary condition in piezoelectric fracture mechanics. International Journal of Fracture, 123, L151-L155. [125]Gao, C.F., Zhao, M., Tong, P., Zhang, T.Y., 2004. The energy release rate and the J-integral of an electrically insulated crack in a piezoelectric material. International Journal of Engineering Science, 42, 2175-2192. [126]McMeeking, R.M., 1999. Crack tip energy release rate for a piezoelectric compact tension specimen. Engineering Fracture Mechanics, 64, 217-244. [127]Gao, C.F., Tong, P., Zhang, T.Y., 2003. Interfacial crack problems in magneto-electroelastic solids. International Journal of Engineering Science, 41, 2105-2121. [128]Gao, C.F., Kessler, H., Balke, H., 2003. Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. International Journal of Engineering Science, 41, 969-981. [129]Gao, C.F., Kessler, H., Balke, H., 2003. Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. International Journal of Engineering Science, 41, 983-994. [130]Sih, G.C., Chen, E.P., 2003. Dilatational and distortional behavior of cracks in magnetoelectroelastic materials. Theoretical and Applied Fracture Mechanics, 40, 1-21. [131]Sih, G.C., Jones, R., Song, Z.F., 2003. Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials. Theoretical and Applied Fracture Mechanics, 40, 161-186. [132]Sih, G.C., Song, Z.F., 2003. Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite. Theoretical and Applied Fracture Mechanics, 39, 209-227. [133]Song, Z.F., Sih, G.C., 2003. Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theoretical and Applied Fracture Mechanics, 39, 189-207. [134]Spyropoulos, C.P., Sih, G.C., Song, Z.F., 2003. Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation. Theoretical and Applied Fracture Mechanics, 39, 281-289. [135]Wang, B.L., Mai, Y.W., 2003. Crack tip field in piezoelectric/piezomagnetic media. European Journal of Mechanics A/Solids, 22, 591-602. [136]Wang, X.M., Shen, Y.P., 1996. The conservation laws and path-independent integrals with an application for linear electro-magneto-elastic media. International Journal of Solids and Structures, 33, 865-878. [137]Shi, W., Kuang, Z.B., 2003. Conservation laws in non-homogeneous electro-magneto-elastic materials. European Journal of Mechanics A/Solids, 22, 217-230. [138]Tian, W.Y., Gabbert, U., 2001. Multiple crack interaction problem in magnetoelectroelastic solids. European Journal of Mechanics A/Solids, 23, 599-614. [139]Gao, C.F., Tong, P., Zhang, T.Y., 2004. Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. International Journal of Solids and Structures, 41, 6613-6629. [140]Wang, B.L., Mai, Y.W., 2004. Fracture of piezoelectromagnetic materials. Mechanics Research Communications, 31, 65-73. [141]Sih, G.C., Yu, H.Y., 2005. Volume fraction effect of magnetoelectroelastic composite on enhancement and impediment of crack growth. Composite Structures, 68, 1-11. [142] Gao, C.F., Noda, N., 2004. Thermal-induced interfacial cracking of magnetoelectroelastic materials. International Journal of Engineering Science, 42, 1347-1360. [143] Li, X.F., 2005. Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. International Journal of Solids and Structures, 42, 3185-3205. [144]Hu, K., Li, G., 2005. Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. International Journal of Solids and Structures, 42, 2823-2835. [145]Pan, E., 2001. Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME Journal of Applied Mechanics, 68, 608-618. [146]Pan, E., Heyliger, P.R., 2002. Free vibrations of simply supported and multilayered magneto-electro-elastic plates. Journal of Sound and Vibration, 252, 429-442. [147]Hsieh, M.C., Hwu, C., 2003, Extended Stroh-like formalism for the magneto-electro-elastic composite laminates. International Conferences on Computational Mesomechanics Associated with Development and Fabrication of Use-Specific Materials (Mesomechanics 2003), Tokyo, Japan. [148]Buchanan, G.R., 2004. Layered versus multiphase magneto-electro-elastic composites. Composites: Part B, 35, 413-420. [149] Hou, P., Leung, Y.T.A., Ding, H., 2003. The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies. International Journal of Solids and Structures, 40, 2833-2850. [150]Li, J.Y., 2000. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. International Journal of Engineering Science, 38, 1993-2011. [151]Aboudi, J., 2001. Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Materials and Structures, 10, 867-877. [152]Boresi, A.P., Chong, K.P., 2000. Elasticity in Engineering Mechanics. Second edition, John Wiley & Sons, New York. [153] Sneddon, I.N., 1972. The Use of Integral Transforms. McGraw-Hill, New York. [154] Erdogan, F., Biricikoglu, V., 1973. Two bonded half planes with a crack going through the interface. International Journal of Engineering Science, 11, 745-766. [155]Muskhelishvili, N.I., 1953. Singular Integral Equations. P. Noordhoff, Groningen, The Netherlands. [156]Spiegel, M.R., Liu, J., 1999. Mathematical Handbook of Formulas and Tables. Second edition, McGraw-Hill, New York. [157]Sih, G.C., 1973. Methods of Analysis and Solutions of Crack Problems. Ed. by G. C. Sih, Martinus Nijhoff, The Netherlands. [158]Chen, C.D., Chue, C.H., 2003. Fracture mechanics analysis of a composite piezoelectric strip with an internal semi-infinite electrode. Theoretical and Applied Fracture Mechanics, 39, 291-314. [159]Pan, E., 2002. Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 53, 815-838. [160]Li, X.F., Fan, T.Y., 2002. Electroelastic field for an impermeable anti-plane shear crack in a piezoelectric ceramics plate. Applied Mathematics and Mechanics, 23, 194-202. [161]Wang, X., Zhong, Z., 2003. A finitely long circular cylindrical shell of piezoelectric/ piezomagnetic composite under pressuring and temperature change. International Journal of Engineering Science, 41, 2429-2445. [162] Narita, F., Shindo, Y., 1998. Layered piezoelectric medium with interface crack under anti-plane shear, Theoretical and Applied Fracture Mechanics, 30, 119-126. [163]Ueda, S., 2003. Normal impact of a piezoelectric strip with an off-center crack perpendicular to interface. Theoretical and Applied Fracture Mechanics, 39 , 259-273. [164]Jarng, S.S., 2003. Magnetostrictive Terfenol-D material linear simulation using finite element method. The 2nd International Conference on Mechatronics and Information Technology, Jecheon, Korea, 2003. [165]Neelakanta, P.S., 1995. Handbook of Electromagnetic Materials. Chapter 2: Dielectric materials. CRC Press, New York. [166] Tsai, S.W., Hahn, H.T., 1980. Introduction to Composite Materials. Technomic Publishing Company, Connecticut.
|