跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉晉奇
研究生(外文):Jin-Chee Liu
論文名稱:含界面裂紋之雙磁電彈楔形結構反平面破壞分析
論文名稱(外文):Antiplane Fracture Analysis of Bimaterial Magneto-Electro-Elastic Wedge with an Interface Crack
指導教授:褚晴暉褚晴暉引用關係
指導教授(外文):Ching-Hwei Chue
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:164
中文關鍵詞:磁電彈反平面問題界面裂紋楔形
外文關鍵詞:magneto-electro-elasticantiplaneinterface crackwedge
相關次數:
  • 被引用被引用:5
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
  本論文包含兩部分,第一部份是分析含界面裂紋雙磁電彈楔形之反平面破壞力學問題。經由梅林轉換及殘值定理,可以推導出一組奇異積分方程式,並求解楔形結構裂紋尖端間環形區域內之反平面磁電彈場。結果顯示,所獲得的應力場、電位移場與磁感場之間並無耦合現象,而且均與材料性質無關。這個現象來自於裂紋在電與磁雙方面均假設為非滲透型,以及對稱的幾何外形與邊界條件。

  本文以含裂紋之單材料磁電彈楔形結構為例,證明能量密度理論在預測裂紋成長方面優於能量釋放率理論。研究結果發現在裂紋尖端附近的能量釋放率為負值,無法評估裂紋的破裂行為,因此本文採用能量密度理論。接著,依據裂紋尖端附近反平面磁電彈近場解,可以得到磁電彈場之各式強度因子,再總和而成單一之能量密度因子。結果發現該因子與裂紋尖端的局部圓柱座標q1無關。依據能量密度理論,此界面裂紋可能沿任意角度成長,而與裂紋尖端附近材料的破壞韌性有關。

  為了瞭解界面裂紋的破壞行為,本文進一步探討楔形角度以及作用於楔形邊界之外在負荷等因素,與能量密度因子的關係。結果顯示,電場和磁場方向的逆轉在裂紋尖端造成不同的能量分佈。當二者方向相反時,將提高裂紋成長的趨動力。

  本論文第二部份以雙磁電彈材料接合而成的楔形結構為例,利用梅林轉換,探討磁電彈場在楔形頂點之奇異性。經由特徵方程式,可以得到各種不同材料的組合與接合角度下之奇異性階數。結果顯示,兩材料BaTiO3體積百分比的差距越大,奇異性階數就越高,不利於該結構的可靠度。另外,從材料的選擇與接合角度,均可尋求奇異性消失的條件,以確保結構的安全。

  本論文所有結果,均可以退化至壓電問題或單純彈性問題。
 This paper contains two parts. The first part is to study the fracture problem of a bimaterial magneto-electro-elastic (MEE) composite wedge containing an interface impermeable crack under antiplane shear and inplane electric and magnetic loads. After employing the Mellin transform and residue theorem, the governing equations are reduced to a system of singular integral equations. The antiplane magneto-electro-elastic field inside a circular region between the crack tips is obtained. It is found that the fields of stress, electric displacement and magnetic induction are uncoupled and are independent of material properties. This result is based on the assumption of the impermeable crack and the symmetry of structure geometry and boundary conditions.

 To prove the superior of the energy density theory to the energy release rate theory, the problem of a single MEE wedge containing a radial internal crack located at the symmetric axis is considered. A negative energy release rate near the crack tip is obtained and cannot be used to predict the fracture propagation.

 In order to apply the energy density theory, the energy density factors at the crack tips in each material are computed from the intensity factors of stress, strain, electric displacement, electric field, magnetic induction and magnetic field. The energy density factors are independent of the local coordinate q1 defined at the crack tips. It means that the crack may extend along any direction depending on the fracture toughness of the materials near the crack tip. For further investigations, the variations of the energy density factors with the wedge angles and the external loads applied on the wedge edges are plotted graphically. The results show that the change in directions of the magnetic field and electric field will significantly affect the energy distribution near the crack tips. If these two directions are opposite, the crack driving forces are enhanced to extend the cracks.

 The second part of this paper is to analyze the singularity behavior of a bimaterial MEE composite wedge. Using the Mellin transform, the characteristic equations of eigenvalues are derived analytically. The antiplane singularity orders are then obtained numerically under the combinations of different material properties and wedge angles. The results show that the singularities become stronger when the difference between the BaTiO3 volume fractions of both materials is larger. Also, the conditions for vanishing singularities can be determined if the material properties and wedge angles are selected properly.

 All results of this paper can be degenerated to the piezoelectric or elastic problems.
目錄

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號表 xi


第1章 緒論 1
1.1 前言 1
1.2 壓電材料 2
1.3 磁電彈材料與壓磁材料 9
1.4 本研究相關文獻回顧 12
1.4.1 楔形問題 12
1.4.2 壓電材料裂紋問題 17
1.4.3 磁電彈材料裂紋問題 23
1.5 本論文分析內容 25

第2章 含界面裂紋之雙磁電彈楔形分析 27
2.1 問題定義 27
2.2 基本公式 31
2.3 求解 34
2.3.1 位移w、電位f 與磁位y 34��
2.3.2 f(r)、g(r)、l(r)函數之求解 52
2.3.3 應力、電位移與磁感之求解 57
2.4 強度因子 59
2.5 能量密度因子 65
2.6 數值結果與討論 67
2.6.1 BaTiO3-CoFe2O4的材料係數 67
2.6.2 強度因子的討論: 楔形角a 的影響 69
2.6.3 強度因子的討論: 界面裂紋位置的影響 71
2.6.4 強度因子的討論: 界面裂紋長度的影響 74
2.6.5 能量密度因子的討論: 楔形角a 的影響 75
2.6.6 能量密度因子的討論: 電負荷的影響 77
2.6.7 能量密度因子的討論: 磁負荷的影響 78
2.6.8 CoFe2O4導磁係數G11之影響 79
2.6.9 界面裂紋面上的位移、電位、磁位 82
2.6.10 能量密度因子與能量釋放率的比較 85
2.7 其他討論 87
2.7.1 無限域楔形之反平面問題 87
2.7.2 點集中負荷問題 88
2.7.3 壓電材料-空氣界面邊界條件與裂紋的滲透性問題 91
2.7.4 磁電彈材料-空氣界面邊界條件與裂紋的滲透性問題 93

第3章 含界面裂紋之雙壓電楔形分析 97
3.1 問題定義與求解 97
3.2 數值結果與討論 102
3.2.1 a=p/2且a®0特例的強度因子 102
3.2.2 能量密度因子 104

第4章 雙磁電彈楔形頂點之奇異性分析 106
4.1 問題定義 106
4.2 基本公式與求解 108
4.3 退化例子 114
4.4 數值結果與討論 115
4.4.1 材料係數 115
4.4.2 單材料磁電彈楔形 116
4.4.3 雙磁電彈楔形(邊界條件A-A組合) 118
4.4.4 磁電彈/壓電楔形(邊界條件A-A組合) 121
4.4.5 磁電彈/壓磁楔形(邊界條件A-A組合) 122
4.4.6 磁電彈/彈性楔形(邊界條件A-A組合) 124
4.4.7 邊界條件A-B組合下之雙磁電彈楔形 125

第5章 結論 127

參考文獻 129

附錄A 140
附錄B 143
附錄C 154
附錄D 158
附錄E 161
參考文獻


[1]Ikeda, T., 1990. Fundamentals of Piezoelectricity. Oxford University Press, Oxford.
[2]周卓明, 2003. 壓電力學. 全華, 台北.
[3]張福學主編, 2001. 現代壓電學. 科學出版社, 北京.
[4] Gandhi, M.V., Thompson, B.S., 1992. Smart Materials and Structures. Chapter 5: Piezoelectric materials. Chapman & Hall, London.
[5]Uchino, K., 1997. Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers, Boston.
[6]Moulson, A.J., Herbert, J.M., 1990. Electroceramics. Chapter 6: Piezoelectric ceramics. Chapman & Hall, London.
[7]楊大智主編, 2002. 智能材料與智能系統. 天津大學出版社, 天津.
[8]IEEE, 1988. IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987, The Institute of Electrical and Electronics Engineers, Inc., New York.
[9]Haertling, G.H., 1999. Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 82(4), 797-818.
[10]Yang, J., Hu, Y., 2004. Mechanics of electroelastic bodies under biasing fields. Applied Mechanics Reviews, 57, 173-189.
[11]Neelakanta, P.S., 1995. Handbook of Electromagnetic Materials. Chapter 12: Ferroelectric materials. CRC Press, New York.
[12]Jaffe, B., Cook, W.R., Jaffe, H., 1971. Piezoelectric Ceramics. Academic Press Limited, India.
[13]Cady, W.G., 1946. Piezoelectricity. McGraw-Hill, New York.
[14] Tiersten, H.F., 1969. Linear Piezoelectric Plate Vibrations. Plenum Press, New York.
[15] Sashida, T., Kenjo, T., 1993. An Introduction to Ultrasonic Motors. Chapter 3: The piezoelectric element and vibrator. Clarendon Press, Oxford.
[16]鄭世裕, 1994. 陶瓷技術手冊. 第14章: 壓電陶瓷. 汪建民主編, 中華民國產業科技發展協進會, 台北.
[17]Nye, J.F., 1985. Physical Properties of Crystals. Clarendon Press, Oxford.
[18]Van Suchtelen, J., 1972. Product properties: a new application of composite materials. Philips Research Reports, 27, 28-37.
[19]Van Den Boomgaard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I., 1974. An in situ grown eutectic magnetoelectric composite material. Part I: Composition and unidirectional solidification. Journal of Materials Science, 9, 1705-1709.
[20]Van Run, A.M.J.G., Terrell, D.R., Scholing, J.H., 1974. An in situ grown eutectic magnetoelectric composite material. Part II: Physical properties. Journal of Materials Science, 9, 1710-1714.
[21]Echigoya, J., Hayashi, S., Obi, Y., 2000. Directional solidification and interface structure of BaTiO3-CoFe2O4 eutectic. Journal of Materials Science, 35, 5587-5591.
[22]Zheng, H. et al., 2004. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science, 303, 661-663.
[23]黃錦煌, 2002. 磁性技術手冊. 第34章:磁電材料及其應用. 金重勳主編, 中華民國磁性技術協會, 新竹.
[24]Engdahl, G., 2000. Handbook of Giant Magnetostrictive Materials. Academic Press, San Diego.
[25]金重勳, 施智超, 2002. 磁性技術手冊. 第31章:磁伸縮材料及應用. 金重勳主編, 中華民國磁性技術協會, 新竹.
[26]Brown, Jr., W.F., 1966. Magnetoelastic Interaction. Springer-Verlag, New York.
[27]Neelakanta, P.S., 1995. Handbook of Electromagnetic Materials. Chapter 14: Ferromagnetic materials. CRC Press, New York.
[28]Bozorth, R.M., Tilden, E.F., Williams, A.J., 1955. Anisotropy and magnetostriction of some ferrites. Physical Review, 99(6), 1788-1798.
[29]Hellwege, K.H. (Eds.), 1970. Landolt-Börnstein - Numerical Data and Functional Relationships in Science and Technology. New series, Group III, Volume 4: Magnetic and other properties of oxides and related compounds. Springer-Verlag, Berlin.
[30]山口喬, 柳田博明, 岡本祥一, 近桂一郎, 1985. 磁性陶瓷. 黃忠良譯(2001), 復漢, 台南.
[31]Berlincourt, D.A., Curran, D.R., Jaffe, H., 1964. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics, Vol. I-A, Mason, W.P. (Ed.), Academic Press, New York.
[32]IEEE, 1991. IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature. ANSI/IEEE Std 319-1990, The Institute of Electrical and Electronics Engineers, Inc., New York.
[33]Nan, C.W., 1994. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B, 50(9), 6082-6088.
[34]Harshe, G., Dougherty, J.P., Newnham, R.E., 1993. Theoretical modelling of 3-0/0-3 magnetoelectric composites. International Journal of Applied Electromagnetics in Materials, 4, 161-171.
[35]Huang, J.H., Kuo, W.S., 1997. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. Journal of Applied Physics, 81(3), 1378-1386.
[36]Huang, J.H., Chiu, Y.H., Liu, H.K., 1998. Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions. Journal of Applied Physics, 83(10), 5364-5370.
[37]Benveniste, Y., 1995. Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Physical Review B, 51(22), 16424-16427.
[38]Li, J.Y, Dunn, M.L., 1998. Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. Journal of Intelligent Material Systems and Structures, 9, 404-416.
[39]Avellaneda, M., Hasrshe, G., 1994. Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites. Journal of Intelligent Material Systems and Structures, 5, 501-513.
[40]Harshe, G., Dougherty, J.P., Newnham, R.E., 1993. Theoretical modelling of multilayer magnetoelectric composites. International Journal of Applied Electromagnetics in Materials, 4, 145-159.
[41]Pan, E., Heyliger, P.R., 2003. Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures, 40, 6859-6876.
[42]Ryu, J., Priya, S., Carazo, A.V., Uchino, K., 2001. Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/Terfenol-D laminate composites. Journal of the American Ceramic Society, 84(12), 2905-2908.
[43] Pao, Y.H., Yeh, C.S., 1973. A linear theory for soft ferromagnetic elastic solids. International Journal of Engineering Science, 11, 415-436.
[44] Lin, C.B., Yeh, C.S., 2002. The magnetoelastic problem of a crack in a soft ferromagnetic solid. International Journal of Solids and Structures, 39, 1-17.
[45]Tranter, C.J., 1948. The use of the Mellin transform in finding the stress distribution in an infinite wedge, Quarterly Journal of Mechanics and Applied Mathematics, 1, 125-130.
[46]Williams, M.L., 1952. Stress singularities resulting from various boundary conditions in angular corners of plates in tension. ASME Journal of Applied Mechanics, 19, 526-528.
[47]Hein, V.L., Erdogan, F., 1971. Stress singularities in a two-material wedge. International Journal of Fracture Mechanics, 7, 317-330.
[48]Bogy, D.B., 1971. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. ASME Journal of Applied Mechanics, 38, 377-386.
[49]Dempsey, J.P., Sinclair, G.B., 1981. On the singular behavior at the vertex of a bi-material wedge. Journal of Elasticity, 11, 317-327.
[50]Theocaris, P.S., 1974. The order of singularity at a multi-wedge corner of a composite plate. International Journal of Engineering Science, 12, 107-120.
[51]Bogy, D.B., 1968. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. ASME Journal of Applied Mechanics. 35, 460-466.
[52]Kuo, M.C., Bogy, D.B., 1974. Plane solutions for traction problems on orthotropic unsymmetrical wedges and symmetrically twinned wedges. ASME Journal of Applied Mechanics, 41, 203-208.
[53]Delale, F., 1984. Stress singularities in bonded anisotropic materials. International Journal of Solids and Structures, 20, 31-40.
[54]Ma, C.C., Hour, B.L., 1989. Analysis of dissimilar anisotropic wedge subjected to antiplane shear deformation. International Journal of Solids and Structures, 25, 1295-1309.
[55]Hwu, C., Ting, T.C.T., 1990. Solutions for the anisotropic elastic wedge at critical wedge angles. Journal of Elasticity, 24, 1-20.
[56]Lin, Y.Y., Sung, J.C., 1998. Stress singularities at the apex of a dissimilar anisotropic wedge. ASME Journal of Applied Mechanics, 65, 454-463.
[57]Chen, H.P., 1998. Stress singularities in anisotropic multi-material wedges and junctions. International Journal of Solids and Structures, 35, 1057-1073.
[58]Chue, C.H., Liu, C.I., 2001. A general solution on stress singularities in anisotropic wedge. International Journal of Solids and Structures, 38, 6889-6906.
[59]Chue, C.H., Liu, C.I., 2002. Disappearance of free-edge stress singularity in composite laminates. Composite Structures, 56, 111-129.
[60]Chue, C. H., Liu, C.I., 2002. Stress singularities in a bimaterial anisotropic wedge with arbitrary fiber orientation. Composite Structures, 58, 49-56.
[61]Kargarnovin, M.H., Shahani, A.R., Fariborz, S.J., 1997. Analysis of an isotropic finite wedge under antiplane deformation. International Journal of Solids and Structures, 34, 113-128.
[62]Chue, C.H., Liu, W.J., 2004. Comments on “Analysis of an isotropic finite wedge under antiplane deformation”. International Journal of Solids and Structures, 41, 5023-5034.
[63]Lucas, R.A., Erdogan, F., 1966. Quasi-static transient thermal stresses in an infinite wedge. International Journal of Solids and Structures, 2, 205-222.
[64]Hwu, C., Lee, W.J., 2004. Thermal effect on the singular behavior of multibonded anisotropic wedges. Journal of Thermal Stresses, 27, 111-136.
[65]Xu, X.L., Rajapakse, R.K.N.D., 2000. On singularities in composite piezoelectric wedges and junctions. International Journal of Solids and Structures, 37, 3253- 3275.
[66]Chue, C.H., Chen, C.D., 2002. Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application to wedge problems. International Journal of Solids and Structures, 39, 3131-3158.
[67]Chen, C.D., Chue, C.H., 2003. Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear. International Journal of Solids and Structures, 40, 6513-6526.
[68]Chue, C.H., Chen, C.D., 2003. Antiplane stress singularities in a bimaterial piezoelectric wedge. Archive of Applied Mechanics, 72, 673-685.
[69]Chue, C.H., Wei, W.B., Liu, T.J.C., 2003. The antiplane electro-mechanical field of a piezoelectric wedge under a pair of concentrated forces and free charges. Journal of the Chinese Institute of Engineers, 26, 575-583.
[70]Wei, W.B., Liu, T.J.C., Chue, C.H., 2002. Antiplane electro-mechanical field of a two-piezoelectric wedge under a pair of concentrated forces and free charges. The 26th National Conference on Theoretical and Applied Mechanics, Hu-Wei, Taiwan, R.O.C.
[71]Chen, B.J., Xiao, Z.M., Liew, K.M., 2002. Electro-elastic stress analysis for a wedge-shaped crack interacting with a screw dislocation in piezoelectric solid. International Journal of Engineering Science, 40, 621-635.
[72]Chen, B.J., Xiao, Z.M., Liew, K.M., 2002. A screw dislocation in a piezoelectric bi-material wedge. International Journal of Engineering Science, 40, 1665-1685.
[73]Chung, M.Y., Ting, T.C.T., 1995. Line force, charge, and dislocation in anisotropic piezoelectric composite wedges and spaces. ASME Journal of Applied Mechanics, 62, 423-428.
[74]Chung, M.Y., Ting, T.C.T., 1995. Line force, charge and dislocation in angularly inhomogeneous anisotropic piezoelectric wedges and spaces. Philosophical Magazine A, 71, 1335-1343.
[75]Erdogan, F., Gupta, G.D., 1975. Bonded wedges with an interface crack under anti-plane loading. International Journal of Fracture, 11, 583-593.
[76]Shahani, A.R., Adibnazari, S., 2000. Analysis of perfectly bonded wedges and bonded wedges with an interface crack under antiplane shear loading. International Journal of Solids and Structures, 37, 2639-2650.
[77]Shahani, A.R., 2001. A note on the paper “Analysis of perfectly bonded wedges and bonded wedges with an interface crack under antiplane shear loading”. International Journal of Solids and Structures, 38, 5041-5043.
[78]Shahani, A.R., 2003. Mode III stress intensity factor for edge-cracked circular shafts, bonded wedges, bonded half planes and DCB’s. International Journal of Solids and Structures, 40, 6567-6576.
[79]Kraus, J.D., Fleisch, D.A., 1999. Electromagnetics with Applications. Fifth edition, McGraw-Hill, New York.
[80]Cheng, D.K., 1983. Field and Wave Electromagnetics. Addison-Wesley, MA.
[81]Landau, L.D., Lifshitz, E.M., 1984. Electrodynamics of Continuous Media. Pergamon press, Oxford.
[82]Edminister, J.A., 1993. Theory and Problems of Electromagnetics. Second edition, McGraw-Hill, New York.
[83]Sih, G.C., 2002. A field model interpretation of crack initiation and growth behavior in ferroelectric ceramics: change of poling direction and boundary condition. Theoretical and Applied Fracture Mechanics, 38, 1-14.
[84]Zuo, J.Z., Sih, G.C., 2000. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theoretical and Applied Fracture Mechanics, 34, 17-33.
[85]Sih, G.C., Zuo, J.Z., 2000. Multiscale behavior of crack initiation and growth in piezoelectric ceramics. Theoretical and Applied Fracture Mechanics, 34, 123-141.
[86]Shen, S., Nishioka, T., 2000. Fracture of piezoelectric materials: energy density criterion. Theoretical and Applied Fracture Mechanics, 33, 57-65.
[87]Soh, A.K., Fang, D.N., Lee, K.L., 2001. Fracture analysis of piezoelectric materials with defects using energy density theory. International Journal of Solids and Structures, 38, 8331-8344.
[88]Zhang, T.Y., Gao, C.F., 2004. Fracture behaviors of piezoelectric materials. Theoretical and Applied Fracture Mechanics, 41, 339-379.
[89]Zhang, T.Y., Zhao, M., Tong, P., 2002. Fracture of piezoelectric ceramics. Advances in Applied Mechanics, 38, 148-289.
[90]Zhang, T.Y., Wang, T., Zhao, M., 2003. Failure behavior and failure criterion of conductive cracks (deep notches) in thermally depoled PZT-4 ceramics. Acta Materialia, 51, 4881-4895.
[91] Sosa, H., 1992. On the fracture mechanics of piezoelectric solids. International Journal of Solids and Structures, 29, 2613-2622.
[92]Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids, 40, 739-765.
[93]Suo, Z., 1991. Mechanics concepts for failure on ferroelectric ceramics. Smart Structures and Materials, AD-Vol. 24/AMD-Vol. 123, ASME, USA.
[94]Park, S., Sun, C.T., 1995. Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society, 78(6), 1475-1480.
[95]Shindo, Y., Murakami, H., Hiriguchi, K., Narita, F., 2002. Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked-beam methods. Journal of the American Ceramic Society, 85, 1243-1248.
[96] Parton, V.Z., 1976. Fracture mechanics of piezoelectric materials. Acta Astronautica, 3, 671-683.
[97]Pak, Y.E., 1990. Crack extension force in a piezoelectric material. ASME Journal of Applied Mechanics, 57, 647-653.
[98]Zhang, T.Y., Hack, J.E., 1992. Mode-III cracks in piezoelectric materials. Journal of Applied Physics, 71, 5865-5870.
[99]Schneider, G.A., Felten, F., McMeeking, R.M., 2003. The electrical potential difference across cracks in PZT measured by Kelvin probe microscopy and the implications for fracture. Acta Materialia, 51, 2235-2241.
[100]Chue, C.H., Weng, S.M, 2005. Fracture analysis of piezoelectric materials with an arbitrarily oriented crack using energy density theory. Computers and Structures, 83, 1251-1265.
[101]Narita. F., Shindo, Y., Watanabe, K., 1999. Anti-plane shear crack in a piezoelectric layer bonded to dissimilar half spaces. JSME International Journal, 42, 66-72.
[102]Li, X.F., Fan, T.Y., 2001. Mode-III interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials. Archive of Applied Mechanics, 71, 703-714.
[103]Chen, Z.T., Yu, S.W., Karihaloo, B.L., 1997. Antiplane shear problem for a crack between two dissimilar piezoelectric materials. International Journal of Fracture, 86, L9-L12.
[104]Chen, Z.T., Worswick, M.J., 2000. Antiplane mechanical and inplane electric time-dependent load applied to two coplanar cracks in piezoelectric ceramic. Theoretical and Applied Fracture Mechanics, 33, 173-184.
[105]Lin, S., Narita, F., Shindo, Y., 2003. Comparison of energy release rate and energy density criteria for a piezoelectric layered composite with a permeable and impermeable crack normal to interface. Theoretical and Applied Fracture Mechanics, 39, 229-243.
[106]Li, X.F., Fan, T.Y., 2000. Semi-infinite anti-plane crack in a piezoelectric material. International Journal of Fracture, 102, L55-L60.
[107]Li, X.F., Tang, G.J., 2002. Antiplane permeable edge cracks in a piezoelectric strip of finite width. International Journal of Fracture, 118, L45-L50.
[108]Li, X.F., Tang, G.J., 2003. Electroelastic analysis of an interface anti-plane shear crack in a layered piezoelectric plate. International Journal of Engineering Science, 41, 1405-1422.
[109]Shindo, Y., Tanaka, K., Narita, F., 1997. Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mechanica, 120, 31-45.
[110]Narita. F., Shindo, Y., 1998. Anti-plane shear crack growth rate of piezoelectric ceramic body with finite width. Theoretical and Applied Fracture Mechanics, 30, 127-132.
[111]Soh, A.K., Fang, D.N., Lee, K.L., 2000. Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. European Journal of Mechanics A/Solids, 19, 961-977.
[112]Li, X.F., 2002. Closed-form solution for a piezoelectric strip with two collinear cracks normal to the strip boundaries. European Journal of Mechanics A/Solids, 21, 981-989.
[113]Wang, B.L., Noda, N., 2002. Generalized plane problem of a cracked piezoelectric layer bonded to dissimilar layers. Acta Mechanica, 153, 79-88.
[114]Lin, S., Narita, F., Shindo, Y., 2003. Electroelastic analysis of a piezoelectric cylindrical fiber with a penny-shaped crack embedded in a matrix. International Journal of Solids and Structures, 40, 5157-5174.
[115]Kumar, S., Singh, R.N., 1996. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings. Acta Materialia, 44, 173-200.
[116]Kumar, S., Singh, R.N., 1997. Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials. Materials Science and Engineering, A231, 1-9.
[117]Fang, D., Qi, H., Yao, Z., 1998. Numerical analysis of crack propagation in piezoelectric ceramics. Fatigue & Fracture of Engineering Materials & Structures, 21, 1371-1380.
[118]Shang, F., Kuna, M., Abendroth, M., 2003. Finite element analyses of three-dimensional crack problems in piezoelectric structures. Engineering Fracture Mechanics, 70, 143-160.
[119]Gruebner, O., Kamlah, M., Munz, D., 2003. Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Engineering Fracture Mechanics, 70, 1399-1413.
[120]Parton, V.Z., Kudryavtsev, B.A., 1988. Electromagnetoelasticity. Gordon and Breach Science Publishers.
[121]Wang, B.L., Mai, Y.W., 2004. Impermeable crack and permeable crack assumptions, which one is more realistic? ASME Journal of Applied Mechanics, 71, 575-578.
[122]Deeg, W., 1980. The Analysis of Dislocation, Crack and Inclusion in Piezoelectric Solids. Ph.D. thesis, Stanford University, Stanford, CA.
[123]Hao, T.H., Shen, Z.Y., 1994. A new electric boundary condition of electric fracture mechanics and its applications. Engineering Fracture Mechanics, 47, 793-802.
[124]Ou, Z.C., Chen, Y.H., 2003. Discussion of the crack face electric boundary condition in piezoelectric fracture mechanics. International Journal of Fracture, 123, L151-L155.
[125]Gao, C.F., Zhao, M., Tong, P., Zhang, T.Y., 2004. The energy release rate and the J-integral of an electrically insulated crack in a piezoelectric material. International Journal of Engineering Science, 42, 2175-2192.
[126]McMeeking, R.M., 1999. Crack tip energy release rate for a piezoelectric compact tension specimen. Engineering Fracture Mechanics, 64, 217-244.
[127]Gao, C.F., Tong, P., Zhang, T.Y., 2003. Interfacial crack problems in magneto-electroelastic solids. International Journal of Engineering Science, 41, 2105-2121.
[128]Gao, C.F., Kessler, H., Balke, H., 2003. Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. International Journal of Engineering Science, 41, 969-981.
[129]Gao, C.F., Kessler, H., Balke, H., 2003. Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. International Journal of Engineering Science, 41, 983-994.
[130]Sih, G.C., Chen, E.P., 2003. Dilatational and distortional behavior of cracks in magnetoelectroelastic materials. Theoretical and Applied Fracture Mechanics, 40, 1-21.
[131]Sih, G.C., Jones, R., Song, Z.F., 2003. Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials. Theoretical and Applied Fracture Mechanics, 40, 161-186.
[132]Sih, G.C., Song, Z.F., 2003. Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite. Theoretical and Applied Fracture Mechanics, 39, 209-227.
[133]Song, Z.F., Sih, G.C., 2003. Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theoretical and Applied Fracture Mechanics, 39, 189-207.
[134]Spyropoulos, C.P., Sih, G.C., Song, Z.F., 2003. Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation. Theoretical and Applied Fracture Mechanics, 39, 281-289.
[135]Wang, B.L., Mai, Y.W., 2003. Crack tip field in piezoelectric/piezomagnetic media. European Journal of Mechanics A/Solids, 22, 591-602.
[136]Wang, X.M., Shen, Y.P., 1996. The conservation laws and path-independent integrals with an application for linear electro-magneto-elastic media. International Journal of Solids and Structures, 33, 865-878.
[137]Shi, W., Kuang, Z.B., 2003. Conservation laws in non-homogeneous electro-magneto-elastic materials. European Journal of Mechanics A/Solids, 22, 217-230.
[138]Tian, W.Y., Gabbert, U., 2001. Multiple crack interaction problem in magnetoelectroelastic solids. European Journal of Mechanics A/Solids, 23, 599-614.
[139]Gao, C.F., Tong, P., Zhang, T.Y., 2004. Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. International Journal of Solids and Structures, 41, 6613-6629.
[140]Wang, B.L., Mai, Y.W., 2004. Fracture of piezoelectromagnetic materials. Mechanics Research Communications, 31, 65-73.
[141]Sih, G.C., Yu, H.Y., 2005. Volume fraction effect of magnetoelectroelastic composite on enhancement and impediment of crack growth. Composite Structures, 68, 1-11.
[142] Gao, C.F., Noda, N., 2004. Thermal-induced interfacial cracking of magnetoelectroelastic materials. International Journal of Engineering Science, 42, 1347-1360.
[143] Li, X.F., 2005. Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. International Journal of Solids and Structures, 42, 3185-3205.
[144]Hu, K., Li, G., 2005. Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. International Journal of Solids and Structures, 42, 2823-2835.
[145]Pan, E., 2001. Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME Journal of Applied Mechanics, 68, 608-618.
[146]Pan, E., Heyliger, P.R., 2002. Free vibrations of simply supported and multilayered magneto-electro-elastic plates. Journal of Sound and Vibration, 252, 429-442.
[147]Hsieh, M.C., Hwu, C., 2003, Extended Stroh-like formalism for the magneto-electro-elastic composite laminates. International Conferences on Computational Mesomechanics Associated with Development and Fabrication of Use-Specific Materials (Mesomechanics 2003), Tokyo, Japan.
[148]Buchanan, G.R., 2004. Layered versus multiphase magneto-electro-elastic composites. Composites: Part B, 35, 413-420.
[149] Hou, P., Leung, Y.T.A., Ding, H., 2003. The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies. International Journal of Solids and Structures, 40, 2833-2850.
[150]Li, J.Y., 2000. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. International Journal of Engineering Science, 38, 1993-2011.
[151]Aboudi, J., 2001. Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Materials and Structures, 10, 867-877.
[152]Boresi, A.P., Chong, K.P., 2000. Elasticity in Engineering Mechanics. Second edition, John Wiley & Sons, New York.
[153] Sneddon, I.N., 1972. The Use of Integral Transforms. McGraw-Hill, New York.
[154] Erdogan, F., Biricikoglu, V., 1973. Two bonded half planes with a crack going through the interface. International Journal of Engineering Science, 11, 745-766.
[155]Muskhelishvili, N.I., 1953. Singular Integral Equations. P. Noordhoff, Groningen, The Netherlands.
[156]Spiegel, M.R., Liu, J., 1999. Mathematical Handbook of Formulas and Tables. Second edition, McGraw-Hill, New York.
[157]Sih, G.C., 1973. Methods of Analysis and Solutions of Crack Problems. Ed. by G. C. Sih, Martinus Nijhoff, The Netherlands.
[158]Chen, C.D., Chue, C.H., 2003. Fracture mechanics analysis of a composite piezoelectric strip with an internal semi-infinite electrode. Theoretical and Applied Fracture Mechanics, 39, 291-314.
[159]Pan, E., 2002. Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 53, 815-838.
[160]Li, X.F., Fan, T.Y., 2002. Electroelastic field for an impermeable anti-plane shear crack in a piezoelectric ceramics plate. Applied Mathematics and Mechanics, 23, 194-202.
[161]Wang, X., Zhong, Z., 2003. A finitely long circular cylindrical shell of piezoelectric/ piezomagnetic composite under pressuring and temperature change. International Journal of Engineering Science, 41, 2429-2445.
[162] Narita, F., Shindo, Y., 1998. Layered piezoelectric medium with interface crack under anti-plane shear, Theoretical and Applied Fracture Mechanics, 30, 119-126.
[163]Ueda, S., 2003. Normal impact of a piezoelectric strip with an off-center crack perpendicular to interface. Theoretical and Applied Fracture Mechanics, 39 , 259-273.
[164]Jarng, S.S., 2003. Magnetostrictive Terfenol-D material linear simulation using finite element method. The 2nd International Conference on Mechatronics and Information Technology, Jecheon, Korea, 2003.
[165]Neelakanta, P.S., 1995. Handbook of Electromagnetic Materials. Chapter 2: Dielectric materials. CRC Press, New York.
[166] Tsai, S.W., Hahn, H.T., 1980. Introduction to Composite Materials. Technomic Publishing Company, Connecticut.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top