跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉人漢
研究生(外文):Ren-Han Liu
論文名稱:纖維素結合功能域對木質醋酸菌生產細菌纖維素之效應
論文名稱(外文):Effect of cellulose-binding domains on bacterial cellulose production by Gluconacetobacter xylinus
指導教授:蘇文達蘇文達引用關係
指導教授(外文):Wen-Ta Su
口試委員:陳文章李振綱吳誌明
口試委員(外文):Wen-Jang ChenCheng-Kang LeeJyh-Ming Wu
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:纖維素結合功能域木質醋酸菌細菌纖維素
外文關鍵詞:Cellulose-binding domainsBacterial celluloseGluconacetobacter xylinus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1598
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
細菌纖維素生產菌株中以木質醋酸菌Gluconacetobacter xylinus 所產生之細菌纖維素量遠高於其它生產菌株,近年來有許多研究皆著重於降低發酵成本及提升細菌纖維素品質,而纖維素結合功能域 (Cellulose-binding domains)由文獻記載能促進植物纖維素生長,且能增加細菌纖維素之合成速率,本研究利用木質醋酸菌異源表現纖維素功能域與雙纖維素結合功能域 (Double cellulose-binding domains)以及外加纖維素功能域與雙纖維素結合功能域於培養基當中,期以提升細菌纖維素產量與提升細菌纖維素品質。研究結果顯示,以建構CBD與dCBD之表現質體轉殖入G. xylinus中,能成功表現出CBD,而基改G. xylinus與外加CBD實驗比較顯示以基改G. xylinus較好,在30℃靜置培養8天其細菌纖維素產量最高能達 2.78 g/l,相較於對照組能提升20.4 %;另在細菌纖維素品質方面結晶度從78.0 % 提升至 86.8 %,保水力從 83.4 % 提升至 94.7 %。因此木質醋酸菌異源表現CBD蛋白質不僅提升細菌纖維素產量更能提升品質。

Bacterial cellulose can be produced by Gram-negative bacterium, such as rod-shaped Gluconacetobacter xylinus. As the organism is obligate aerobic, bacterial cellulose is always produced at the air/liquid interface. In recent years there have been more reports about minimizing the cost of culture and improving the quality of bacterial cellulose. Cellulose-binding domains (CBD) have previously been shown to modulate the elongation of cellulose. In this work, the cellulose-binding domains gene and double cellulose-binding domains (dCBD) were cloned and successfully expressed in G. xylinus. In this study, the feasibility of using G. xylinus to drive the expression of heterologous proteins as well as the function of expressed CBD to enhance cell growth, cellulose productivity, crystallinity, water-holding capacity and at static culture was studied. After 8 days culturing at 30℃, the maximum cell density was 1.16 g/l while bacterial cellulose density was 2.78 g/l (20.4 % higher than control). In terms of bacterial cellulose (BC) quality, the crystallinity index increased from 78.0 % to 86.8 % while water-holding capacity increased from 83.4 % to 94.7 %. The expression system in this study is very successful in that it not only increased cell density and cellulose productivity, but also increased the BC quality.

目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2. 研究目的 2
第二章 文獻回顧 3
2.1 纖維素結合功能域 (Cellulose-binding domains) 3
2.1.1 纖維素功能域的簡介 3
2.1.2 纖維素功能域的發展簡史 3
2.1.3 纖維素功能域的分類 4
2.1.3.1 真菌之纖維素結合功能域 5
2.1.3.2 細菌之纖維素結合功能域 5
2.1.4 纖維素功能域的應用 6
2.2木質醋酸菌 (Gluconacetobacter xylinus) 7
2.2.1木質醋酸菌之生理特性 7
2.2.2影響木質醋酸菌生產細菌纖維素的因素 9
2.2.3基改木質醋酸菌 9
2.3細菌纖維素 (Bacterial cellulose) 10
2.3.1 細菌纖維素簡介 10
2.3.2 細菌纖維素之合成途徑 10
2.3.3 影響細菌纖維素生產之特性與應用 12
2.3.4 細菌纖維素結構與性質 13
2.3.6.1 細菌纖維素結晶度 13
2.3.6.2 細菌纖維素保水力 14
第三章 材料與方法 15
3.1 實驗流程 15
3.2 質體建構流程 16
3.2.1 纖維素結合功能域質體建構 16
3.2.2 雙纖維素結合功能域質體建構 17
3.3 實驗材料 18
3.3.1 菌株 18
3.3.2 載體 18
3.3.3 引子 18
3.3.4 操作試液套件組 (Kit) 18
3.3.5 標準分子量溶液 19
3.3.6 酵素 19
3.3.7 實驗藥品 19
3.3.8 實驗儀器 20
3.4 實驗方法 21
3.4.1 質體純化 21
3.4.2 質體建構 22
3.4.2.1 建構pET14b-CBD質體 22
3.4.2.2 建構pET14b-bla-CBD質體 22
3.4.2.3 建構pBBR-bla-CBD質體 22
3.4.2.4 建構pBBR-bla-dCBD質體 23
3.4.3 基因轉殖法 23
3.4.3.1 製備勝任細胞 23
3.4.3.2 基因轉殖 24
3.4.4 重組蛋白之純化 25
3.4.5 質體穩定度 25
3.4.6 靜置培養G. xylinus生產細菌纖維素 25
3.5 分析方法 26
3.5.1 蛋白質之濃度分析 26
3.5.2 乾菌重量測 26
3.5.3 細菌纖維素量測 27
3.5.4 掃描式電子顯微鏡 27
3.5.5 X光繞射分析(XRD) 27
3.5.6 保水力 27
3.5.7 復水率 28
3.5.8 水散失速率 28
3.5.9 CBD活性測試 28
第四章 結果與討論 29
4.1 質體建構 29
4.1.1 建構pET14b-CBD質體 29
4.1.2 建構pET14b-bla-CBD質體 30
4.1.3 建構pBBR-bla-CBD質體 31
4.1.4 建構pBBR-bla-dCBD質體 32
4.2 電轉殖G. xylinus 34
4.3 質體穩定度分析 35
4.4 以G. xylinus表現CBD蛋白質 36
4.5 測試CBD活性 37
4.6 培養基因改質G. xylinus 38
4.7 外加CBD與dCBD於培養基中培養G. xylinus 40
4.8 細菌纖維素性質分析 44
結論 50
參考文獻 51


[1] M. Linder, I. Salovuori, L. Ruohonen and T. T. Teeri, "Characterization of a double cellulose-binding domain : synergistic high-affinity binding to cellulose," The Journal of Biological Chemistry, vol. 271, no. 35, 1996, 21268-21272.
[2] N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller and R. A. Jr. Warren, "Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families," Microbiological Reviews, vol, 55. no. 2, 1991, pp. 303-315.
[3] P. Tomme, R. A. Warren and N. R. Gilkes, "Cellulose hydrolysis by bacteria and fungi," Advances in Microbial Physiology, vol. 37, 1995, pp. 1-81.
[4] J. Ouyang, X. Li, X. M. Wang, M. Yan and L. Xu, "Advances in cellulose-binding module," Chinese Journal of Bioprocess Engineering, vol. 6, no. 2, 2008, pp. 10-16.
[5] E. T. Reese, R. G. Siu and H. S. Levinson, Journal of Bacteriology, vol. 59, no. 4, 1950, pp. 479-485.
[6] H. Van-Tilbeurgh, P. Tomme, M. Claeyssens and R. Bhikhabhai, "Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: Separation of functional domains," Federation of European Biochemical Societies Letters, vol. 204, no. 1, 1986, pp. 223-227.
[7] N. R. Gilkes, R. A. Warren, R. C. Miller and D. G. Jr. Kilburn, "Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis," Journal of Biological Chemistry, vol. 263, no. 21, 1988, pp. 10401-10407.
[8] Shoseyov, T. Hamamoto, F. Foong and R. H. Doi, "Cloning of Clostridium cellulovorans endo-1,4-beta-glucanase genes," Biochemical and Biophysical Research Communications, vol. 169, no. 2, 1990, pp. 667-672.
[9] N. Din, R. N. Gilkes, B. Tekant, R.C. Miller, R.A.J. Jr. Warren and D.G. Kilburn, "Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase," Biochemical and Biophysical Research Communications, vol. 169, no. 2, 1991, pp. 1096-1099.
[10] P. Tomme, A. Boraston, B. McLean, J. Kormos, A. L. Creagh, K. Sturch, N. R. Gilkes, C. A. Haynes, R. A. Warren and D. G. Kilburn, "Characterization and affinity applications of cellulose-binding domains," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 715. no. 1, 1998, pp. 283-296.
[11] R. R. Banka, S. Mishra and T. K. Ghose, "Fibril formation from cellulose by a novel protein from Trichoderma reesei: A non-hydrolytic cellulolytic component," World Journal of Microbiology and Biotechnology, vol. 14, no. 4, 1988, pp. 551-558.
[12] M. Ziak and I. C. Hancock, "Carbohydrates from Trichoderma reesei and Other Microorganisms. Structures, Biochemistry, Genetics and Applications," Glycoconjugate Journal, vol. 16, no. 3, 1999, pp. 183-183.
[13] P. J. Gao, G. J. Chen, T. H. Wang, Y. S. Zhang and J. Liu, "Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum," Acta Biochimica et Biophysica Sinica, vol. 33, no 1, 2001, pp. 13-18.
[14] Z. Xiao, P. Gao, Y. Qu and T. Wang, "Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose," Biotechnology Letters, vol. 23, no. 9, 2001, pp. 711-715.
[15] R. Yamaguchi, Y. Inoue, H. Tokunaga, M. Ishibashi, T. Arakawa, J. Sumitani, T. Kawaguchi and M. Tokunaga, "Halophilic characterization of starch-binding domain from Kocuria varians α-amylase," International Journal of Biological Macromolecules, vol. 50, no. 1, 2012, pp. 95-102.
[16] C. Neeraja, R. Subramanyam, B. M. Moerschbacher and A. R. Podile, "Swapping the chitin-binding domain in Bacillus chitinases improves the substrate binding affinity and conformational stability," Molecular BioSystems, vol. 6, no.8 2010, pp. 1492-1502.
[17] H. Stalbrand, A. Saloheimo, J. Vehmaanpera, B. Henrissat and M. Penttila, "Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain," Applied and Environmental Microbiology, vol. 61, no. 3, 1995, pp. 1090-1097.
[18] E. Margolles-Clark, M. Tenkanen, H. Soderlund and M. Penttila, "Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain, " European Journal of Biochemistry, vol. 237, no. 3, 1996, pp. 553-560.
[19] N. Kulkarni, A. Shendye and M. Rao, " Molecular and biotechnological aspects of xylanases, " FEMS Microbiology Reviews, vol. 23, no. 4, 1999, pp. 411-456.
[20] H. Kim, K. H. Jung and M. Y. Pack, "Molecular characterization of xynX, a gene encoding a multidomain xylanase with a thermostabilizing domain from Clostridium thermocellum," Applied Microbiology and Biotechnology, vol. 54, no. 4, 2000, pp. 521-527.
[21] E. S. Lymar, B. Li and V. Renganathan, " Purification and Characterization of a Cellulose-Binding (beta)-Glucosidase from Cellulose-Degrading Cultures of Phanerochaete chrysosporium, " Applied and Environmental Microbiology, vol. 61, no. 8, 1995, pp. 2976-2980.
[22] M. Linder, G. Lindeberg, T. Reinikainen, T. T. Teeri and G. Pettersson, "The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acids substitution," Federation of European Biochemical Societies Letters, vol. 372, no. 1, 1995, pp. 96-98.
[23] M. Linder, M. L. Matttinen, M. Kontteli, G. Lindeberg, J. Stahlberg, T. Drakenberg, T. Reinikainen, G. Pettersson and A. Annila., "Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma ressei cellobiohydrolase," Protein Science, vol.4, no. 6, 1995, pp. 1056-1064.
[24] M. Linder, A. Teleman and A. Annila, "Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases," Federation of European Biochemical Societies Letters, vol. 407, no. 3, 1997, pp. 291-296.
[25] M. L. Rabinovich, M. S. Melnik and A. V. Bolobova, "Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial Cellulases," Applied Biochemistry and Microbiology, vol. 38, no. 4, 2002, pp. 305-322.
[26] D. N. Bolam, A. Ciruela, S. McQueen-Mason, P. Simpson, M. P. Williamson, J. E. Rixon, A. Boraston, G. P. Hazlewood and H. J. Gilbert, "Pseudomonas cellulose-binding mediate their effects by increasing enzyme substrate proximity," Biochemical Journal. vol. 331, no. 3, 1998, 775-781.
[27] J. Tormo, R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham and T. A. Steitz," Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose, " EMBO Journal, vol. 15, no. 21, 1996, 5739-5751.
[28] V. Notenboom, A. B. Boraston, D. G. Kilburn and D. R. Rose, "Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms," Biochemistry, vol. 40, no. 21, 2001, pp. 6248-6256.
[29] Levy, Z. Shani and O. Shoseyov, "Modification of polysaccharides and plant cell wall by endo-1,4-bglucanase and cellulose-binding domains," Biomolecular Engineering, vol. 19, no 1, 2002, 17-30.
[30] J. C. Rotticci-Mulder, M. Gustavsson, M. Holmquist, K. Hult and M. Martinelle, “Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain,” Protein Expression and Purification, vol. 21, no. 3, 2001, pp. 386–392.
[31] R. D. Richins, A. Mulchandani and W. Chen, “Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes,” Biotechnology and Bioengineering, vol. 69, no. 6, 2000, pp. 591-596.
[32] E. Shpigel, A. Goldlust, G. Efroni, A. Avraham, A. Eshel, M. Dekel and O.Shoseyov, “Immobilization of recombinant heparinase I fused to cellulose-binding domain,” Biotechnology and Bioengineering, vol. 65, no. 1, 1999, pp. 17-23.
[33] Levy, G. Ward, Y. Hadar, O. Shoseyov and C. G. Dosoretz, “Oxidation of 4-bromophenol by the recombinant fused protein cellulose-binding domain-horseradish peroxidase immobilized on cellulose,” Biotechnology and Bioengineering, vol. 82, no. 2, 2003, pp. 223-231.
[34] H. Pala, R. Pinto, M. Mota, A. P. Duarte and F. M. Gama. Applications of Enzymes to Lignocellulosics, Northamptonshire, ACS Symposium Series, 2003, pp. 105-115.
[35] Shoseyov, Z. Shani and E.Shpigel, “Transgenic plants of altered morphology. “ US patent 6,184,440. 2001.
[36] E. Shpigel, L. Roiz, R. Goren and O. Shoseyov, "Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells, " Plant Physiology, vol. 117, no. 4, 1998, 1185-1194.
[37] P. Ross, R. Mayer and M. Benziman, "Cellulose biosynthesis and function in bacteria," Microbiology and Molecular Biology Reviews, vol. 55, no. 3, 1991, 35-58.
[38] Y. Yamada, “Validation of the publication of new names and new combinations previously effectively published outside the IJSB,” International Journal of Systematic Bacteriology, vol. 46 no. 2, 1996, pp. 625-626.
[39] Y. Yamada, K. Katsura, H. Kawasaki, Y. Widyastuti, S. Saono, T. Seki, T. Uchimura and K. Komagata, “Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria,” International Journal of Systematic and Evolutionary Microbiology. vol. 50, no. 2, 2000, 823-829.
[40] M. Benziman, and H. Burger-Rachamimov, “Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum,” Journal of Bacteriology, vol. 84 no. 4, 1962, pp. 625-630.
[41] G. B. Garrity, J. Don, Krieg, R. Noel, Staley and T. James, "Volume Two: The Proteobacteria (Part C)," Bergey''s manual of systematic bacteriology, vol. 2, no. 8, 2005, 72-81.
[42] C. H. Haigler, A. R. White, R. M. Brown and K. M. Cooper, "Alteration of in vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives," The Journal of Cell Biology, vol. 94, no. 4, 1982, 64-69.
[43] S. Masaoka, T. Ohe and N. Sakota, “Production of cellulose from glucose by A. xylinum.” Juurnal of Fermentation and Bioengineering. vol. 75, no. 1, 1993, pp. 18-22.
[44] H. I. Jung, J. H. Jeong, O. M. Lee, G. T. Park, K. K. Kim, H. C. S. M. Park, Lee, Y. G. Kim and H. J. Son, "Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks, " Bioresource Technology, vol. 101, no. 10, 2010, pp. 3602-3608.
[45] M. E. Embuscado, M. J. Kano and J. N. Be-Miller, "Factors affecting the production of cellulose by Acetobacter xylinum," Food Hydrocolloids, vol. 8, no. 1, 1994, 407-418.
[46] T. Nakai, A. Moriya, N. Tonouchi, T. Tsuchida, F. Yoshinaga, S. Horinouchi, Y. Sone, H. Mori, F. Sakai and T. Hayashi, “Control of expression by the cellulose synthase (bcsA) promoter region from A. xylinum BPR2001.” Gene. vol. 213, no. 1, 1998, pp. 23-100.
[47] E. Battad-Bernardo, S. L. McCrindle, I. Couperwhite and B. A. Neilan, "Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey," FEMS Microbiology Letters, vol. 231, 2004, pp. 253-260.
[48] T. Shigematsu, K. Takamine, M. Kitazato, T. Morita, T. Naritomi, S. Morimura and K. Kida, "Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp," Journal of Bioscience and Bioengineering, vol. 99, 2005, pp. 415-422.
[49] L. J. Chien, H. T. Chen, P. F. Yang and C. K. Lee, "Enhancement of cellulose pellicle production by constitutively expressing Vitreoscilla Hemoglobin in Acetobacter xylinum," Biotechnology Progress, vol. 22, 2006, 1598-1603.
[50] C. A. Alaban, " Studies in the optimum conditions for "nata de coco" bacterium or "nata" formation in coconut water," Philippine Agriculturist, vol. 45, no. 11, 1967, 490-516.
[51] Okiyama, M. Motoki and S. Yamanaka, "Bacterial cellulose II. Processing of the gelatinous cellulose for food materials," Food Hydrocoll, vol. 6, no. 23, 1992, 479-487.
[52] M. Roberfroid, "Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects," Critical Reviews in Food Science and Nutrition, vol. 33, no. 2, 1993, 103-148.
[53] M. Iguchi, S. Yamanaka, A. Budhiono, " Bacterial cellulose-a masterpiece of nature''s arts," Journal of Materials Science, vol. 35, no.2, 2000, pp. 261-270.
[54] P. R. Chawla, I. B. Bajaj, S. A. Survase, and R. S. Singhal, "Microbial cellulose: fermentative production and applications," Food Technology and Biotechnology. vol. 47, no. 2, 2009, 107-124.
[55] D. Klemm, D. Schumann, U. Udhardt and S. Marsch, "Bacterial synthesized cellulose – artificial blood vessels for microsurgery," Progress Polymer Science. vol. 26, 2001, 1561-1603.
[56] S. Yamanaka and J. Sugiyama, “Structural modification of bacterial cellulose.” Cellulose, vol. 7, no. 3, 2000, pp. 213-225.
[57] J. George, K. V. Ramana, S. N. Sabapathy, and A. S. Bawa , "Physico-mechanical properties of chemically treated bacterial cellulose membrane," World Journal of Microbiology and Biotechnology, vol. 21, no. 2, 2005, 1323-1327.
[58] M. Iguchi, S.Yamanaka and A. Budfiono, “Bacterial cellulose – a masterpiece of nature’s arts.” Journal of Materials Science. vol. 35, no. 2, 2000, pp. 261-270.
[59] J. Fontana, A. De-Souza, C. Fontana, I. Torriani, J. Moreschi, B. Gallotti, S. De Souza, G. Narcisco, J. Bichara and L. Farah, “Acetobacter cellulose pellicle as a temporary skin substitute.” Applied Biochemistry and Biotechnology, vol. 24, no. 1, 1990, pp. 253-264.
[60] W. Czaja, A. Krystynowicz, S. Bielecki and R. M. Brown , "Microbial cellulose-the natural power to heal wounds," Biomaterials, vol. 27, no. 2, 2006, pp. 145-151.
[61] W. Czaja, D. J. Young and M. Kawecki, "The future prospects of microbial cellulose in biomedical applications," Biomacromolecules, vol. 8, no. 1, 2007, pp. 1-12.
[62] Y. H. P. Zhang and L. R. Lynd, "Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiosein cell extracts of Clostridium thermocellum," Applied and Environmental Microbiology, vol. 70 , no. 3, 2004, pp. 1563-1569.
[63] L. Segal, J. Creely, A. Martin, and C. Conrad , "An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer," Textile Research Journal, vol. 9, no. 1, 1959, 786-794.
[64] K. C. Cheng, J. M. Catchmark and A. Demirci1, "Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis," Journal of Biological Engineering, vol. 24, 2009, pp. 3-12.
[65] O. Shezad, S. Khan, T. Khan and J. K. Park, "Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy," Carbohydrate Polymers, vol. 82, no. 4, 2010, 173-180.
[66] Y. Y. Li, Y. Y. Chu, H. Shen and D. Liang, "Study on fire residues in pure cotton fabric combustion," Advanced Materials Research, vol. 391, no. 1, 2012, pp. 1479-1482.
[67] M. Ul-Islama, T. Khana and J. K. Parka, "Water holding and release properties of bacterial cellulose obtained by in situand ex situ modification," Carbohydrate Polymers, vol. 88, no. 2, 2012, 596– 603.
[68] B. Laszkiewicz, "Solubility of bacterial cellulose and its structural properties, " Journal of Applied Polymer Science, vol. 67 , no. 11, 1998, 1871-1876.
[69] M. Seifert, S. Hesse, V. Kabrelian, and D. Klemm, "Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium," Journal of Polymer Science, vol. 42, no. 3, 2004, 463-470.
[70] H. C. Huang, L. C. Chen, S. B. Lin, C. P. Hsu and H. H. Chen, "In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation, " Bioresource Technology, vol. 101, no. 15, 2010, 6084-6091.
[71] J. M. Wu and R. H. Liu, " Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus, " Carbohydrate Polymers, vol. 90 , 2012, 116-121.
[72] C. Castro, R. Zuluag, J. Putaux, G. Caro, I.Mondragon and P. Ganan, "Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes," Carbohydrate Polymers, vol. 84, 2011, 96-102.
[73] S. Y. Oh, D. I. Yoo Y. Shin, and H.C. Kim, "Crystalline structure analysis of cellulosetreated with sodium hydroxide and carbon dioxide by means of X-raydiffraction and FTIR spectroscopy," Carbohydrate Research, vol. 340, no. 15, 2005, pp. 2376-2391.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊