|
[1] M. Linder, I. Salovuori, L. Ruohonen and T. T. Teeri, "Characterization of a double cellulose-binding domain : synergistic high-affinity binding to cellulose," The Journal of Biological Chemistry, vol. 271, no. 35, 1996, 21268-21272. [2] N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller and R. A. Jr. Warren, "Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families," Microbiological Reviews, vol, 55. no. 2, 1991, pp. 303-315. [3] P. Tomme, R. A. Warren and N. R. Gilkes, "Cellulose hydrolysis by bacteria and fungi," Advances in Microbial Physiology, vol. 37, 1995, pp. 1-81. [4] J. Ouyang, X. Li, X. M. Wang, M. Yan and L. Xu, "Advances in cellulose-binding module," Chinese Journal of Bioprocess Engineering, vol. 6, no. 2, 2008, pp. 10-16. [5] E. T. Reese, R. G. Siu and H. S. Levinson, Journal of Bacteriology, vol. 59, no. 4, 1950, pp. 479-485. [6] H. Van-Tilbeurgh, P. Tomme, M. Claeyssens and R. Bhikhabhai, "Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: Separation of functional domains," Federation of European Biochemical Societies Letters, vol. 204, no. 1, 1986, pp. 223-227. [7] N. R. Gilkes, R. A. Warren, R. C. Miller and D. G. Jr. Kilburn, "Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis," Journal of Biological Chemistry, vol. 263, no. 21, 1988, pp. 10401-10407. [8] Shoseyov, T. Hamamoto, F. Foong and R. H. Doi, "Cloning of Clostridium cellulovorans endo-1,4-beta-glucanase genes," Biochemical and Biophysical Research Communications, vol. 169, no. 2, 1990, pp. 667-672. [9] N. Din, R. N. Gilkes, B. Tekant, R.C. Miller, R.A.J. Jr. Warren and D.G. Kilburn, "Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase," Biochemical and Biophysical Research Communications, vol. 169, no. 2, 1991, pp. 1096-1099. [10] P. Tomme, A. Boraston, B. McLean, J. Kormos, A. L. Creagh, K. Sturch, N. R. Gilkes, C. A. Haynes, R. A. Warren and D. G. Kilburn, "Characterization and affinity applications of cellulose-binding domains," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 715. no. 1, 1998, pp. 283-296. [11] R. R. Banka, S. Mishra and T. K. Ghose, "Fibril formation from cellulose by a novel protein from Trichoderma reesei: A non-hydrolytic cellulolytic component," World Journal of Microbiology and Biotechnology, vol. 14, no. 4, 1988, pp. 551-558. [12] M. Ziak and I. C. Hancock, "Carbohydrates from Trichoderma reesei and Other Microorganisms. Structures, Biochemistry, Genetics and Applications," Glycoconjugate Journal, vol. 16, no. 3, 1999, pp. 183-183. [13] P. J. Gao, G. J. Chen, T. H. Wang, Y. S. Zhang and J. Liu, "Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum," Acta Biochimica et Biophysica Sinica, vol. 33, no 1, 2001, pp. 13-18. [14] Z. Xiao, P. Gao, Y. Qu and T. Wang, "Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose," Biotechnology Letters, vol. 23, no. 9, 2001, pp. 711-715. [15] R. Yamaguchi, Y. Inoue, H. Tokunaga, M. Ishibashi, T. Arakawa, J. Sumitani, T. Kawaguchi and M. Tokunaga, "Halophilic characterization of starch-binding domain from Kocuria varians α-amylase," International Journal of Biological Macromolecules, vol. 50, no. 1, 2012, pp. 95-102. [16] C. Neeraja, R. Subramanyam, B. M. Moerschbacher and A. R. Podile, "Swapping the chitin-binding domain in Bacillus chitinases improves the substrate binding affinity and conformational stability," Molecular BioSystems, vol. 6, no.8 2010, pp. 1492-1502. [17] H. Stalbrand, A. Saloheimo, J. Vehmaanpera, B. Henrissat and M. Penttila, "Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain," Applied and Environmental Microbiology, vol. 61, no. 3, 1995, pp. 1090-1097. [18] E. Margolles-Clark, M. Tenkanen, H. Soderlund and M. Penttila, "Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain, " European Journal of Biochemistry, vol. 237, no. 3, 1996, pp. 553-560. [19] N. Kulkarni, A. Shendye and M. Rao, " Molecular and biotechnological aspects of xylanases, " FEMS Microbiology Reviews, vol. 23, no. 4, 1999, pp. 411-456. [20] H. Kim, K. H. Jung and M. Y. Pack, "Molecular characterization of xynX, a gene encoding a multidomain xylanase with a thermostabilizing domain from Clostridium thermocellum," Applied Microbiology and Biotechnology, vol. 54, no. 4, 2000, pp. 521-527. [21] E. S. Lymar, B. Li and V. Renganathan, " Purification and Characterization of a Cellulose-Binding (beta)-Glucosidase from Cellulose-Degrading Cultures of Phanerochaete chrysosporium, " Applied and Environmental Microbiology, vol. 61, no. 8, 1995, pp. 2976-2980. [22] M. Linder, G. Lindeberg, T. Reinikainen, T. T. Teeri and G. Pettersson, "The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acids substitution," Federation of European Biochemical Societies Letters, vol. 372, no. 1, 1995, pp. 96-98. [23] M. Linder, M. L. Matttinen, M. Kontteli, G. Lindeberg, J. Stahlberg, T. Drakenberg, T. Reinikainen, G. Pettersson and A. Annila., "Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma ressei cellobiohydrolase," Protein Science, vol.4, no. 6, 1995, pp. 1056-1064. [24] M. Linder, A. Teleman and A. Annila, "Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases," Federation of European Biochemical Societies Letters, vol. 407, no. 3, 1997, pp. 291-296. [25] M. L. Rabinovich, M. S. Melnik and A. V. Bolobova, "Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial Cellulases," Applied Biochemistry and Microbiology, vol. 38, no. 4, 2002, pp. 305-322. [26] D. N. Bolam, A. Ciruela, S. McQueen-Mason, P. Simpson, M. P. Williamson, J. E. Rixon, A. Boraston, G. P. Hazlewood and H. J. Gilbert, "Pseudomonas cellulose-binding mediate their effects by increasing enzyme substrate proximity," Biochemical Journal. vol. 331, no. 3, 1998, 775-781. [27] J. Tormo, R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham and T. A. Steitz," Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose, " EMBO Journal, vol. 15, no. 21, 1996, 5739-5751. [28] V. Notenboom, A. B. Boraston, D. G. Kilburn and D. R. Rose, "Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms," Biochemistry, vol. 40, no. 21, 2001, pp. 6248-6256. [29] Levy, Z. Shani and O. Shoseyov, "Modification of polysaccharides and plant cell wall by endo-1,4-bglucanase and cellulose-binding domains," Biomolecular Engineering, vol. 19, no 1, 2002, 17-30. [30] J. C. Rotticci-Mulder, M. Gustavsson, M. Holmquist, K. Hult and M. Martinelle, “Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain,” Protein Expression and Purification, vol. 21, no. 3, 2001, pp. 386–392. [31] R. D. Richins, A. Mulchandani and W. Chen, “Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes,” Biotechnology and Bioengineering, vol. 69, no. 6, 2000, pp. 591-596. [32] E. Shpigel, A. Goldlust, G. Efroni, A. Avraham, A. Eshel, M. Dekel and O.Shoseyov, “Immobilization of recombinant heparinase I fused to cellulose-binding domain,” Biotechnology and Bioengineering, vol. 65, no. 1, 1999, pp. 17-23. [33] Levy, G. Ward, Y. Hadar, O. Shoseyov and C. G. Dosoretz, “Oxidation of 4-bromophenol by the recombinant fused protein cellulose-binding domain-horseradish peroxidase immobilized on cellulose,” Biotechnology and Bioengineering, vol. 82, no. 2, 2003, pp. 223-231. [34] H. Pala, R. Pinto, M. Mota, A. P. Duarte and F. M. Gama. Applications of Enzymes to Lignocellulosics, Northamptonshire, ACS Symposium Series, 2003, pp. 105-115. [35] Shoseyov, Z. Shani and E.Shpigel, “Transgenic plants of altered morphology. “ US patent 6,184,440. 2001. [36] E. Shpigel, L. Roiz, R. Goren and O. Shoseyov, "Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells, " Plant Physiology, vol. 117, no. 4, 1998, 1185-1194. [37] P. Ross, R. Mayer and M. Benziman, "Cellulose biosynthesis and function in bacteria," Microbiology and Molecular Biology Reviews, vol. 55, no. 3, 1991, 35-58. [38] Y. Yamada, “Validation of the publication of new names and new combinations previously effectively published outside the IJSB,” International Journal of Systematic Bacteriology, vol. 46 no. 2, 1996, pp. 625-626. [39] Y. Yamada, K. Katsura, H. Kawasaki, Y. Widyastuti, S. Saono, T. Seki, T. Uchimura and K. Komagata, “Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria,” International Journal of Systematic and Evolutionary Microbiology. vol. 50, no. 2, 2000, 823-829. [40] M. Benziman, and H. Burger-Rachamimov, “Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum,” Journal of Bacteriology, vol. 84 no. 4, 1962, pp. 625-630. [41] G. B. Garrity, J. Don, Krieg, R. Noel, Staley and T. James, "Volume Two: The Proteobacteria (Part C)," Bergey''s manual of systematic bacteriology, vol. 2, no. 8, 2005, 72-81. [42] C. H. Haigler, A. R. White, R. M. Brown and K. M. Cooper, "Alteration of in vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives," The Journal of Cell Biology, vol. 94, no. 4, 1982, 64-69. [43] S. Masaoka, T. Ohe and N. Sakota, “Production of cellulose from glucose by A. xylinum.” Juurnal of Fermentation and Bioengineering. vol. 75, no. 1, 1993, pp. 18-22. [44] H. I. Jung, J. H. Jeong, O. M. Lee, G. T. Park, K. K. Kim, H. C. S. M. Park, Lee, Y. G. Kim and H. J. Son, "Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks, " Bioresource Technology, vol. 101, no. 10, 2010, pp. 3602-3608. [45] M. E. Embuscado, M. J. Kano and J. N. Be-Miller, "Factors affecting the production of cellulose by Acetobacter xylinum," Food Hydrocolloids, vol. 8, no. 1, 1994, 407-418. [46] T. Nakai, A. Moriya, N. Tonouchi, T. Tsuchida, F. Yoshinaga, S. Horinouchi, Y. Sone, H. Mori, F. Sakai and T. Hayashi, “Control of expression by the cellulose synthase (bcsA) promoter region from A. xylinum BPR2001.” Gene. vol. 213, no. 1, 1998, pp. 23-100. [47] E. Battad-Bernardo, S. L. McCrindle, I. Couperwhite and B. A. Neilan, "Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey," FEMS Microbiology Letters, vol. 231, 2004, pp. 253-260. [48] T. Shigematsu, K. Takamine, M. Kitazato, T. Morita, T. Naritomi, S. Morimura and K. Kida, "Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp," Journal of Bioscience and Bioengineering, vol. 99, 2005, pp. 415-422. [49] L. J. Chien, H. T. Chen, P. F. Yang and C. K. Lee, "Enhancement of cellulose pellicle production by constitutively expressing Vitreoscilla Hemoglobin in Acetobacter xylinum," Biotechnology Progress, vol. 22, 2006, 1598-1603. [50] C. A. Alaban, " Studies in the optimum conditions for "nata de coco" bacterium or "nata" formation in coconut water," Philippine Agriculturist, vol. 45, no. 11, 1967, 490-516. [51] Okiyama, M. Motoki and S. Yamanaka, "Bacterial cellulose II. Processing of the gelatinous cellulose for food materials," Food Hydrocoll, vol. 6, no. 23, 1992, 479-487. [52] M. Roberfroid, "Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects," Critical Reviews in Food Science and Nutrition, vol. 33, no. 2, 1993, 103-148. [53] M. Iguchi, S. Yamanaka, A. Budhiono, " Bacterial cellulose-a masterpiece of nature''s arts," Journal of Materials Science, vol. 35, no.2, 2000, pp. 261-270. [54] P. R. Chawla, I. B. Bajaj, S. A. Survase, and R. S. Singhal, "Microbial cellulose: fermentative production and applications," Food Technology and Biotechnology. vol. 47, no. 2, 2009, 107-124. [55] D. Klemm, D. Schumann, U. Udhardt and S. Marsch, "Bacterial synthesized cellulose – artificial blood vessels for microsurgery," Progress Polymer Science. vol. 26, 2001, 1561-1603. [56] S. Yamanaka and J. Sugiyama, “Structural modification of bacterial cellulose.” Cellulose, vol. 7, no. 3, 2000, pp. 213-225. [57] J. George, K. V. Ramana, S. N. Sabapathy, and A. S. Bawa , "Physico-mechanical properties of chemically treated bacterial cellulose membrane," World Journal of Microbiology and Biotechnology, vol. 21, no. 2, 2005, 1323-1327. [58] M. Iguchi, S.Yamanaka and A. Budfiono, “Bacterial cellulose – a masterpiece of nature’s arts.” Journal of Materials Science. vol. 35, no. 2, 2000, pp. 261-270. [59] J. Fontana, A. De-Souza, C. Fontana, I. Torriani, J. Moreschi, B. Gallotti, S. De Souza, G. Narcisco, J. Bichara and L. Farah, “Acetobacter cellulose pellicle as a temporary skin substitute.” Applied Biochemistry and Biotechnology, vol. 24, no. 1, 1990, pp. 253-264. [60] W. Czaja, A. Krystynowicz, S. Bielecki and R. M. Brown , "Microbial cellulose-the natural power to heal wounds," Biomaterials, vol. 27, no. 2, 2006, pp. 145-151. [61] W. Czaja, D. J. Young and M. Kawecki, "The future prospects of microbial cellulose in biomedical applications," Biomacromolecules, vol. 8, no. 1, 2007, pp. 1-12. [62] Y. H. P. Zhang and L. R. Lynd, "Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiosein cell extracts of Clostridium thermocellum," Applied and Environmental Microbiology, vol. 70 , no. 3, 2004, pp. 1563-1569. [63] L. Segal, J. Creely, A. Martin, and C. Conrad , "An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer," Textile Research Journal, vol. 9, no. 1, 1959, 786-794. [64] K. C. Cheng, J. M. Catchmark and A. Demirci1, "Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis," Journal of Biological Engineering, vol. 24, 2009, pp. 3-12. [65] O. Shezad, S. Khan, T. Khan and J. K. Park, "Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy," Carbohydrate Polymers, vol. 82, no. 4, 2010, 173-180. [66] Y. Y. Li, Y. Y. Chu, H. Shen and D. Liang, "Study on fire residues in pure cotton fabric combustion," Advanced Materials Research, vol. 391, no. 1, 2012, pp. 1479-1482. [67] M. Ul-Islama, T. Khana and J. K. Parka, "Water holding and release properties of bacterial cellulose obtained by in situand ex situ modification," Carbohydrate Polymers, vol. 88, no. 2, 2012, 596– 603. [68] B. Laszkiewicz, "Solubility of bacterial cellulose and its structural properties, " Journal of Applied Polymer Science, vol. 67 , no. 11, 1998, 1871-1876. [69] M. Seifert, S. Hesse, V. Kabrelian, and D. Klemm, "Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium," Journal of Polymer Science, vol. 42, no. 3, 2004, 463-470. [70] H. C. Huang, L. C. Chen, S. B. Lin, C. P. Hsu and H. H. Chen, "In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation, " Bioresource Technology, vol. 101, no. 15, 2010, 6084-6091. [71] J. M. Wu and R. H. Liu, " Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus, " Carbohydrate Polymers, vol. 90 , 2012, 116-121. [72] C. Castro, R. Zuluag, J. Putaux, G. Caro, I.Mondragon and P. Ganan, "Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes," Carbohydrate Polymers, vol. 84, 2011, 96-102. [73] S. Y. Oh, D. I. Yoo Y. Shin, and H.C. Kim, "Crystalline structure analysis of cellulosetreated with sodium hydroxide and carbon dioxide by means of X-raydiffraction and FTIR spectroscopy," Carbohydrate Research, vol. 340, no. 15, 2005, pp. 2376-2391.
|