跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡慧君
研究生(外文):Tsai, Hui-Chun
論文名稱:肉蓯蓉對老化促進小鼠抗疲勞及延緩老化之功能評估研究
論文名稱(外文):Anti-fatigue and anti-aging effects of Cistanches tubulosa in senescence accelerated mice
指導教授:王銘富王銘富引用關係
指導教授(外文):Wang, Ming-Fu
口試委員:王銘富詹吟菁陳甫州徐成金廖俊旺
口試委員(外文):Wang, Ming-FuChan, Yin-ChingCheng, Fu-ChouHsu, Cheng-ChinLiao, Jiunn-Wang
口試日期:2011-07-18
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:108
中文關鍵詞:肉蓯蓉抗疲勞跑步機訓練老化促進小鼠
外文關鍵詞:Cistanche tubulosaanti-fatiguetreadmillsenescence-accelerated mouse
相關次數:
  • 被引用被引用:1
  • 點閱點閱:900
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:3
肉蓯蓉 (Cistanche tubulosa) 為多年生寄生草本植物,分布於溫暖的沙漠、荒漠等地區,為傳統珍貴藥材並素有“沙漠人參”之美譽,研究指出肉蓯蓉具有抗氧化、對於肝及腦損傷皆有保護作用,但對於抗疲勞之功效尚未明瞭。本研究目的在探討肉蓯蓉對老化促進小鼠抗疲勞之功能評估。實驗以3月齡雄性老化促進小鼠SAMP8 (senescence accelerated mouse prone-8, SAMP8) 為對象,隨機分有跑步機訓練組和無跑步機訓練組,每組又分為控制組和實驗組:控制組 (sedentary control, SC)、實驗組 (sedentary treatment, ST) 運動組 (exercise control, ExC)、運動實驗組 (exercise treatment, ExT),每組10隻,總共4組,實驗組管灌200 mg/kg BW肉蓯蓉萃取物 (Cistanche tubulosa Extract, CE),實驗為期4週。實驗期間記錄體重、攝食量和飲水量,實驗第3週進行老化評估,且所有組別於第1、2和4週執行運動測試 (exercise program),記錄小鼠運動期間因疲勞而被電擊次數,隨後犧牲。分析血中乳酸、葡萄糖含量,及一般血液生化值,檢測肌肉和肝臟肝醣含量以探討可能增加運動能力之機轉,觀察血液、肝臟和腦之抗氧化狀態,包括丙二醛含量、麩胱苷肽過氧化酶活性和血液超氧歧化酶活性。另以免疫組織化學染色觀察腦部β-類澱粉蛋白 (β-amyloid protein, Aβ) 沉積情形。研究結果顯示,各組體重、攝食量和飲水量均無顯著差異。老化評估方面,運動實驗組之老化總分顯著較其他三組低 (p < 0.05)。跑步機訓練方面,運動實驗組在實驗期間第1、2和4週其運動表現比其他三組好、被電擊次數最少;實驗組和運動實驗組運動後其血液乳酸含量顯著比控制組低 (p < 0.05);在肝醣檢測方面,運動實驗組其肝臟和肌肉肝醣含量高於其他三組;在血液抗氧化方面,運動實驗組其丙二醛含量為三組最低者、而麩胱苷肽過氧化酶活性為三組最高者,特別是超氧歧化酶活性,實驗組和運動實驗組其活性皆顯著高於控制組和運動組 (p < 0.05);在肝臟和腦之抗氧化狀態,實驗組和運動實驗組其丙二醛含量低於控制組和運動組,麩胱苷肽過氧化酶活性則是實驗組和運動實驗組較其他二組高,特別是腦部的麩胱苷肽過氧化酶活性,實驗組和運動實驗組顯著較控制組和運動組高 (p < 0.05)。在小鼠腦部β-類澱粉蛋白沉積百分比方面,控制組和運動組其β-類澱粉蛋白沉積較實驗組和運動實驗組高,其中運動實驗組之β-類澱粉蛋白沉積百分比顯著較控制組低 (p < 0.05)。由實驗結果推論,肉蓯蓉萃取物有助於跑步機運動表現,降低運動後血液代謝產物生成乳酸,提升肌肉和肝臟肝醣的儲存量以及改善體內抗氧化狀態,進而達到抗疲勞效果,另外在腦部β-類澱粉蛋白沉積中發現肉蓯蓉能有助於小鼠的學習記憶能力。
Cistanche tubulosa is perennial parasite herbs and mainly distributed in warm deserts and arid lands, which is a precious plant for traditional medicine and herbs earned the honor of “Ginseng of the deserts”. Experimental results have demonstrated that Cistanche tubulosa has been shown to have anti-oxidant, and protective effect of liver and brain damage. However, no reference was published for investigating the effect of anti-fatigue. The purpose of this study was to investigate the effects of Cistanche tubulosa on anti-fatigue in senescence-accelerated mice (SAMP8). 3-month-old male SAMP8 mice were used in this study. The mice were randomly divided into four groups, sedentary and exercise were administered by treadmill to control and treatment groups. Groups were divided: sedentary control (SC, n=10), sedentary treatment (ST, n=10), exercise control (ExC, n=10), and exercise treatment (ExT, n=10). The control groups were given double-distilled water (ddH2O) by gavage and the treatment groups were given 200 mg / kg body weight (BW) Cistanche tubulosa extract (CE) by gavage for 4 consecutive weeks. The body weight, food intakes and water consumption were measured. And on the third week, the aging scores were measured. The exercise program was performed after trained 1, 2 and 4 week by all groups, and during exercise that the electric shock frequencies of exercise program were record. The blood glucose and lactic acid concentrations and biochemical parameters of blood were analyzed after the mice sacrificed. And we explored the possible mechanisms in increasing the capability of exercise by glycogen content of muscle and liver. Anti-oxidation state were estimated in blood, liver and brain, malondialdehyde concentration (MDA), glutathione peroxidase actives (GPx) and superoxide dismutase actives (SOD) of blood, and β-amyloid protein (Aβ) deposition of brain were evaluated. The results showed that there were no significant difference in body weight, food intakes and water consumption among groups. The aging score of ExT group was significantly lower than other groups (p < 0.05). Results from the exercise program, during the experiment, at the first, second and fourth week of exercise program that retention frequencies of ExT group was the least. After running, blood lactic acid concentrations of ST and ExT groups were significantly lower than SC and ExC groups (p < 0.05). The content of hepatic and muscle glycogen of ExT group was significantly higher than other groups (p < 0.05). Results from anti-oxidation state of blood showed that the MDA concentration of ExT group was lower than other groups, and GPx activity of ExT group was higher than other groups, especially the SOD activity of ST and ExT groups were significantly higher than SC and ExC groups (p < 0.05). In addition, the anti-oxidation state of liver and brain showed that the MDA concentration of liver and brain in ST and ExT groups were lower than other groups, and the GPx activity of ST and ExT groups were higher than other groups, particularly the GPx activity of brain in ST and ExT groups were significantly higher than SC and ExC groups (p < 0.05). In addition, the β-amyloid protein deposition of brain in ExT group was significantly lower than SC group (p < 0.05). In summary, the supplement of Cistanche tubulosa extract could increase capability of exercise, decrease blood lactic acid after exercise, increase capability of exercise by increasing glycogen content in muscle and liver and improve the antioxidant defense system. There effects show that Cistanche tubulosa extract have anti-fatigue activity. In addition, β-amyloid protein deposition of brain showed Cistanche tubulosa extract was taken benefit of learning and memory ability.
目錄

中文摘要.......................................................................................................I
英文摘要.....................................................................................................III
誌謝.............................................................................................................VI
目錄............................................................................................................VII
表目錄..........................................................................................................X
圖目錄.........................................................................................................XI
第一章 前言.................................................................................................1
第二章 文獻回顧.........................................................................................4
第一節 肉蓯蓉.........................................................................................4
一、肉蓯蓉簡介.................................................................................4
二、肉蓯蓉的生理功能.....................................................................5
第二節 運動與疲勞.................................................................................8
第三節 運動與氧化壓力........................................................................11
一、運動氧化壓力來源....................................................................11
二、運動與體內抗氧化狀態............................................................14
三、運動與組織傷害 ......................................................................16
第四節 老化促進小鼠.............................................................................17
一、老化促進小鼠來源.....................................................................17
二、老化促進小鼠之特徵與應用.....................................................17
三、老化指數系統.............................................................................19
第三章 材料與方法.....................................................................................26
第一節 實驗動物.....................................................................................26
第二節 實驗材料.....................................................................................27
一、實驗分組.....................................................................................27
二、劑量換算.....................................................................................27
第三節 實驗方法與步驟.........................................................................29
一、實驗流程.....................................................................................29
二、跑步機運動.................................................................................32
三、老化指數.....................................................................................33
四、血液生化學分析.........................................................................33
五、血液乳酸分析.............................................................................34
六、肝臟肝醣和肌肉肝醣分析.........................................................34
七、抗氧化能力分析.........................................................................35
八、腦部病理切片觀察.....................................................................41
第四節 統計分析...................................................................................50
第四章 結果.................................................................................................51
第一節 體重變化和平均每日飲水量及攝食量.....................................51
第二節 運動電擊次數.............................................................................53
第三節 老化指數.....................................................................................58
第四節 器官重量.....................................................................................61
第五節 血液生化學分析.........................................................................61
第六節 血液葡萄糖和乳酸含量.............................................................64
第七節 肝醣含量.....................................................................................66
第八節 血液、肝臟和腦抗氧化能力分析.............................................68
一、血液抗氧化能力.........................................................................68
二、肝臟和腦抗氧化能力.................................................................68
第九節 腦部β-類澱粉蛋白之沉積........................................................75
第五章 討論.................................................................................................78
第六章 結論.................................................................................................85
第七章 參考文獻.........................................................................................86

表目錄

表一 SAM品系之病理特徵......................................................................................22
表二 SAM品系之病理表現與平均生命期..............................................................23
表三 老化指數判定標準..........................................................................................24
表四 3月齡雄性小鼠飼養4週之體重變化和平均每日飲水量及攝食量...........52
表五 3月齡雄性小鼠飼養3週後之老化指數比較...............................................60
表六 3月齡雄性小鼠飼養4週後之器官重量.......................................................62
表七 3月齡雄性小鼠飼養4週後之血液生化值比較...........................................63
表八 3月齡雄性小鼠飼養4週之跑步機測試後血液葡萄醣和乳酸含量...........65
表九 3月齡雄性小鼠在跑步機運動後之肝臟和肌肉肝醣含量...........................67
表十 3月齡雄性小鼠飼養4週後之血液丙二醛含量及抗氧化酵素麩胱苷肽過氧化酶和超氧歧化酶活性.70

圖目錄

圖一 SAM品系小鼠的世代發展.............................................................................21
圖二 實驗流程圖.....................................................................................................31
圖三 跑步機裝置圖.................................................................................................32
圖四 腦部F區域切面圖.......................................................................................48
圖五 病理組織切片流程圖...................................................................................49
圖六 (A) 3月齡雄性小鼠第1週運動測試之電擊次數......................................55
圖六 (B) 3月齡雄性小鼠第2週運動測試之電擊次數......................................56
圖六 (C) 3月齡雄性小鼠第4週運動測試之電擊次數......................................57
圖七 3月齡雄性小鼠飼養3週後之外觀...........................................................59
圖八 3月齡雄性小鼠飼養4週後之肝臟丙二醛含量.......................................71
圖九 3月齡雄性小鼠飼養4週後之腦部丙二醛含量.......................................72
圖十 3月齡雄性小鼠飼養4週後之肝臟麩胱苷肽過氧化酶活性...................73
圖十一 3月齡雄性小鼠飼養4週後之腦部麩胱苷肽過氧化酶活性...............74
圖十二 SAMP8小鼠腦部β-類澱粉蛋白沉積情形............................................76
圖十三 3月齡雄性小鼠飼養4週後之腦部β-類澱粉蛋白沉積平均面積百分比. 77

田楓、張闊、康愛君、姜勇、周淑佩、鄭振輝,2006。松果菊苷改善SAM-P/8小鼠學習記憶能力作用機制初探。實驗動物科學與管理23(2):14-5。
林正常,2005。運動生理學。師大書苑。
蒲小平、李燕云,2004。肉蓯蓉苯乙醇苷抗中腦神經元凋亡機制的研究。中國藥理學簡訊19(4):50。
鄭景峰,2002。肌酸與運動表現。運動生理週訊132。
鄧樹勳、王健,2004。運動生理學-理論與應用。冠學文化1-22。
Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25(17):4217-21.
Andrade FH, Reid MB, Allen DG, Westerblad H. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol. 1998;509:565-75.
Bi L & Triadafilopoulos G. Exercise and gastrointestinal function and disease: an evidence-based review of risks and benefits. Clin Gastroenterol Hepatol 2003;1:345-55.
Blomstrand E. A role for branched-chain amino acids in reducing central fatigue. J Nutr. 2006;136(2):544S-7S.
Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. J Appl Physiol. 1994;76(6):2253-61.
Butterfield DA, Poon HF. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Exp Gerontol. 2005;40(10):774-83.
Caillaud C, Py G, Eydoux N, Legros P, Prefaut C, Mercier J. Antioxidants and mitochondrial respiration in lung, diaphragm, and locomotor muscles: effect of exercise. Free Radic Biol Med. 1999;26(9-10):1292-9.
Chae CH, Kim HT. Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem Int. 2009;55(4):208-13.
Chang CK, Huang HY, Tseng HF, Hsuuw YD, Tso TK. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles. J Nutr Biochem. 2007;18(1):39-45.
Chen BQ, Liu YX, Kang WY. Hepatoprotective effect and antioxidant activity of cultivate Cistanche deserticola Y.C.Ma. Fine Chemicals. 2010;27(4):342-5.
Cheng H, Yu J, Jiang Z, Zhang X, Liu C, Peng Y, et al. Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice. Neurosci Lett. 2008;432(2):111-6.
Chiba Y, Shimada A, Hosokawa M. The SAM strain of mice, a higher oxidative stress, age-dependent degenerative disease, and senescence acceleration model. Oxidative Stress in Applied Basic Research and Clinical Practice. 2010; part 3:359-79.
Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr. 2000;72:637S-46S.
Cooper CE, Vollaard NBJ, Choueiri T, Wilson MT. Exercise, free radicals and oxidative stress. Biochemical Society Transactions. 2002;30:280-5.
Demirel HA, Powers SK, Caillaud C, Coombes JS, Naito H, Fletcher LA, et al. Exercise training reduces myocardial lipid peroxidation following short-term ischemia-reperfusion. Med Sci Sports Exerc. 1998;30(8):1211-6.
Deng M, Zhao JY, Tu PF, Jiang Y, Li ZB, Wang YH. Echinacoside rescues the SHSY5Y neuronal cells from TNFalpha-induced apoptosis. Eur J Pharmacol. 2004;505(1-3):11-8.
Derave W, Eijnde BO, Ramaekers M, Hespel P. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Exp Gerontol. 2005;40(7):562-72.
Ding JF, Li YY, Xu JJ, Su XR, Gao X, Yue FP. Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocolloids. 2011;25:1350-3.
Flood JF, Morley JE. Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev. 1998;22(1):1-20.
Fry AC, Kraemer WJ, Van Borselen F, Lynch JM, Triplett NT, Koziris LP, et al. Catecholamine responses to short-term high-intensity resistance exercise overtraining. J Appl Physiol. 1994;77(2):941-6.
Geng X, Tian X, Tu P, Pu X. Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson's disease. Eur J Pharmacol. 2007;564(1-3):66-74.
Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126-31.
Gonenc S, Acikgoz O, Semin I, Ozgonul H. The effect of moderate swimming exercise on antioxidant enzymes and lipid peroxidation levels in children. Indian J Physiol Pharmacol. 2000;44(3):340-4.
Gulinuer LL, Tu Pengfei. Study on molecular mechanism of echinacoside for against aging. Acta biophysica sinica. 2004;20(3):183-7.
Hargreaves M. Muscle glycogen and metabolic regulation. Proc Nutr Soc. 2004;63(2):217-20.
He W, Fang T, Tu P. Research progress on pharmacological activities of echinacoside. Zhongguo Zhong Yao Za Zhi. 2009;34(4):476-9.
Heilmann J, Calis I, Kirmizibekmez H, Schuhly W, Harput S, Sticher O. Radical scavenger activity of phenylethanoid glycosides in FMLP stimulated human polymorphonuclear leukocytes: structure-activity relationships. Planta Med. 2000;66(8):746-8.
Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56(4):831-8.
Hosokawa M, Kasai R, Higuchi K, Takeshita S, Shimizu K, Hamamoto H, et al. Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM). Mech Ageing Dev. 1984;26(1):91-102.
Hosokawa M. Grading score system: a method of evaluation of the degree of senescence in senescence-accelerated mouse (SAM). The SAM Model of Senescence Excerpta Medica. 1994:23-8.
Huang CC, Lin TJ, Lu YF, Chen CC, Huang CY, Lin WT. Protective effects of L-arginine supplementation against exhaustive exercise-induced oxidative stress in young rat tissues. Chin J Physiol. 2009;52(5):306-15.
Huang CC, Tsai SC, Lin WT. Potential ergogenic effects of L-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Exp Gerontol. 2008;43(6):571-7.
Ikeuchi M, Koyama T, Takahashi J, Yazawa K. Effects of astaxanthin supplementation on exercise-induced fatigue in mice. Biol Pharm Bull. 2006;29(10):2106-10.
Itoh H, Ohkuwa T, Yamamoto T, Sato Y, Miyamura M, Naoi M. Effects of endurance physical training on hydroxyl radical generation in rat tissues. Life Sci. 1998;63(21):1921-9.
Ivy JL, Kuo CH. Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiol Scand. 1998;162(3):295-304.
Jakeman PM. Amino acid metabolism, branched-chain amino acid feeding and brain monoamine function. Proc Nutr Soc. 1998;57(1):35-41.
Jenkins RR. Exercise and oxidative stress methodology: a critique. Am J Clin Nutr. 2000;72:670S-4S.
Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc. 1993;25(2):225-31.
Jiang Y, Tu PF. Analysis of chemical constituents in Cistanche species. J Chromatogr A. 2009;1216(11):1970-9.
Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, et al. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol. 2010;45(5):357-65.
Kostka T. Aging, physical activity and free radicals. Pol Merkur Lekarski. 1999;7(40):202-4.
Lambert EV, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39:52-62.
Lee FT, Kuo TY, Liou SY, Chien CT. Chronic Rhodiola rosea extract supplementation enforces exhaustive swimming tolerance. Am J Chin Med. 2009;37(3):557-72.
Lee KY, Jeong EJ, Lee HS, Kim YC. Acteoside of Callicarpa dichotoma attenuates scopolamine-induced memory impairments. Biol Pharm Bull. 2006;29(1):71-4.
Leelarungrayub D, Saidee K, Pothongsunun P, Pratanaphon S, Yankai A, Bloomer RJ. Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women. J Bodyw Mov Ther. 2011;15(3):355-62.
Leeuwenburgh C, Heinecke JW. Oxidative stress and antioxidants in exercise. Curr Med Chem. 2001;8(7):829-38.
Li J, Ge RC, Zheng RL, Liu ZM, Jia ZJ. Antioxidative and chelating activities of phenylpropanoid glycosides from Pedicularis striata. Zhongguo Yao Li Xue Bao. 1997;18(1):77-80.
Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, et al. Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience. 2009;163(3):741-9.
Lin WT, Yang SC, Tsai SC, Huang CC, Lee NY. L-Arginine attenuates xanthine oxidase and myeloperoxidase activities in hearts of rats during exhaustive exercise. Br J Nutr. 2006;95(1):67-75.
Liu YF, Chen HI, Yu L, Kuo YM, Wu FS, Chuang JI, et al. Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem. 2008;90(1):81-9.
Markesbery WR, Carney JM. Oxidative alterations in Alzheimer's disease. Brain Pathol. 1999;9(1):133-46.
Marzatico F, Pansarasa O, Bertorelli L, Somenzini L, Della Valle G. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness. 1997;37(4):235-9.
Masuda K, Tanabe, K., & Kuno, S. Y. Exercise, oxidative stress and health benefit. Bulletin of Institute of Health and Sport Sciences-University of Tsukuba Ibaraki ken. 2002;25(1):1-11.
Matsugoa S, Yasuia F, Sasakib K. Analysis of the oxidative stress state in the brain and peripheral organs of senescence-accelerated mouse model. International Congress Series. 2004;1260:251-3.
Maughan RJ. Volume Ⅶ of the Encyclopadia of Sports Medicine Nutrition in Sport. Oxford: Blackwell Science Let. 2000:171-83.
Medved I, Brown MJ, Bjorksten AR, Leppik JA, Sostaric S, McKenna MJ. N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol. 2003;94(4):1572-82.
Miyamoto M, Kiyota Y, Yamazaki N, Nagaoka A, Matsuo T, Nagawa Y, et al. Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol Behav. 1986;38(3):399-406.
Morikawa T, Pan Y, Ninomiya K, Imura K, Matsuda H, Yoshikawa M, et al. Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa. Bioorg Med Chem. 2010;18(5):1882-90.
Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D. The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med. 2008;38(7):579-606.
Nomura Y, Okuma Y. Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging. 1999;20(2):111-5.
Okuma Y, Nomura Y. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach. Jpn J Pharmacol. 1998;78(4):399-404.
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158-69.
Poon HF, Castegna A, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, et al. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience. 2004;126(4):915-26.
Powers SK, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc. 1999;58(4):1025-33.
Ravi Kiran T, Subramanyam MV, Asha Devi S. Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: relationship to swim intensity and duration. Comp Biochem Physiol B Biochem Mol Biol. 2004;137(2):187-96.
Sachdev S, Davies KJ. Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med. 2008;44(2):215-23.
Shimada A, Hosokawa M, Ohta A, Akiguchi I, Takeda T. Localization of atrophy-prone areas in the aging mouse brain: comparison between the brain atrophy model SAM-P/10 and the normal control SAM-R/1. Neurosci. 1994;59(4):859-69.
Staniek K, Gille L, Kozlov AV, Nohl H. Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways. Free Radic Res. 2002;36(4):381-7.
Suzuki K, Nakaji S, Yamada M, Liu Q, Kurakake S, Okamura N, et al. Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med Sci Sports Exerc. 2003;35(2):348-55.
Tabner BJ, El-Agnaf OM, Turnbull S, German MJ, Paleologou KE, Hayashi Y, et al. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial british dementia. J Biol Chem. 2005;280:35789-92.
Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, et al. A new murine model of accelerated senescence. Mech Ageing Dev. 1981;17(2):183-94.
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res. 2009;34(4):639-59.
Tatum VL, Changchit C, Chow CK. Measurement of malondialdehyde by high performance liquid chromatography with fluorescence detection. Lipids 1990;25:226-9.
Tiidus PM, Pushkarenko J, Houston ME. Lack of antioxidant adaptation to short-term aerobic training in human muscle. Am J Physiol. 1996;271:R832-6.
Trejo-Gutierrez JF, Fletcher G. Impact of exercise on blood lipids and lipoproteins. J Clin Lipidol. 2007;1(3):175-81.
Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003;189(1-2):41-54.
Vina J, Gimeno A, Sastre J, Desco C, Asensi M, Pallardo FV, et al. Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life. 2000;49(6):539-44.
Viru A, Viru M. Biochemical monitoring of sport training (chaper 5). Champaign, IL: Human Kinetics. 2001.
Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. J Ethnopharmacol. 2010;130(2):421-3.
Wu BJ, Liu YP, Lu BJ. Effects of different movement styles on learning and memory abilities of senescence -accelerated mice. Chinese Journal of Rehabilitation Medicine. 2010;25(5):430-4.
Wu XM, Gao XM, Tsim KW, Tu PF. An arabinogalactan isolated from the stems of Cistanche deserticola induces the proliferation of cultured lymphocytes. Int J Biol Macromol. 2005;37(5):278-82.
Wu Y, Li L, Wen T, Li YQ. Protective effects of echinacoside on carbon tetrachloride-induced hepatotoxicity in rats. Toxicology. 2007;232(1-2):50-6.
Xiong Q, Kadota S, Tani T, Namba T. Antioxidative effects of phenylethanoids from Cistanche deserticola. Biol Pharm Bull. 1996;19(12):1580-5.
Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001;54(3):176-86.
Zhang L, Wan N. Advances in the research of sport fatigue caused by the action of free radical lipid oxidation. Chin J Lab Diagn. 2006;10:1104-8.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top