|
參考文獻 1.Piatigorsky, J. and G.J. Wistow, Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell, 1989. 57(2): p. 197-9. 2.Wistow, G., Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci, 1993. 18(8): p. 301-6. 3.Delaye, M. and A. Tardieu, Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 1983. 302(5907): p. 415-7. 4.Wistow, G.J. and J. Piatigorsky, Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem, 1988. 57: p. 479-504. 5.Slingsby, C. and L. Miller, The reaction of glutathione with the eye-lens protein gamma-crystallin. Biochem J, 1985. 230(1): p. 143-50. 6.de Jong, W.W., et al., Evolution of eye lens crystallins: the stress connection. Trends Biochem Sci, 1989. 14(9): p. 365-8. 7.Piatigorsky, J. and J. Horwitz, Characterization and enzyme activity of argininosuccinate lyase/delta-crystallin of the embryonic duck lens. Biochim Biophys Acta, 1996. 1295(2): p. 158-64. 8.Cvekl, A., et al., A complex array of positive and negative elements regulates the chicken alpha A-crystallin gene: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol Cell Biol, 1994. 14(11): p. 7363-76. 9.Horwitz, J., T. Emmons, and L. Takemoto, The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent. Curr Eye Res, 1992. 11(8): p. 817-22. 10.Bloemendal, H., et al., Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol, 2004. 86(3): p. 407-85. 11.Sampaleanu, L.M., et al., Domain exchange experiments in duck delta-crystallins: functional and evolutionary implications. Protein Sci, 1999. 8(3): p. 529-37. 12.Lee, H.J., et al., Critical role of tryptophanyl residues in the conformational stability of goose delta-crystallin. Exp Eye Res, 2006. 83(3): p. 658-66. 13.Simpson, A., et al., The structure of avian eye lens delta-crystallin reveals a new fold for a superfamily of oligomeric enzymes. Nat Struct Biol, 1994. 1(10): p. 724-34. 14.Piatigorsky, J., et al., Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci U S A, 1988. 85(10): p. 3479-83. 15.Sampaleanu, L.M., B. Yu, and P.L. Howell, Mutational analysis of duck delta 2 crystallin and the structure of an inactive mutant with bound substrate provide insight into the enzymatic mechanism of argininosuccinate lyase. J Biol Chem, 2002. 277(6): p. 4166-75. 16.Chang, G.G., H.J. Lee, and R.H. Chow, pH-induced reversible dissociation of tetrameric duck lens delta-crystallin. Exp Eye Res, 1997. 65(5): p. 653-9. 17.Chakraborty, A.R., A. Davidson, and P.L. Howell, Mutational analysis of amino acid residues involved in argininosuccinate lyase activity in duck delta II crystallin. Biochemistry, 1999. 38(8): p. 2435-43. 18.Abu-Abed, M., et al., Structural comparison of the enzymatically active and inactive forms of delta crystallin and the role of histidine 91. Biochemistry, 1997. 36(46): p. 14012-22. 19.Sun, T.X., B.K. Das, and J.J. Liang, Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin. J Biol Chem, 1997. 272(10): p. 6220-5. 20.Raman, B. and C.M. Rao, Chaperone-like activity and quaternary structure of alpha-crystallin. J Biol Chem, 1994. 269(44): p. 27264-8. 21.Kumar, L.V., T. Ramakrishna, and C.M. Rao, Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem, 1999. 274(34): p. 24137-41. 22.Datta, S.A. and C.M. Rao, Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates. J Biol Chem, 1999. 274(49): p. 34773-8. 23.Marini, I., et al., Complete protection by alpha-crystallin of lens sorbitol dehydrogenase undergoing thermal stress. J Biol Chem, 2000. 275(42): p. 32559-65. 24.Rajaraman, K., et al., Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett, 2001. 497(2-3): p. 118-23. 25.Hook, D.W. and J.J. Harding, Molecular chaperones protect catalase against thermal stress. Eur J Biochem, 1997. 247(1): p. 380-5. 26.Hess, J.F. and P.G. FitzGerald, Protection of a restriction enzyme from heat inactivation by [alpha]-crystallin. Mol Vis, 1998. 4: p. 29. 27.Goenka, S., et al., Unfolding and refolding of a quinone oxidoreductase: alpha-crystallin, a molecular chaperone, assists its reactivation. Biochem J, 2001. 359(Pt 3): p. 547-56. 28.Nath, D., et al., Alpha-crystallin and ATP facilitate the in vitro renaturation of xylanase: enhancement of refolding by metal ions. Protein Sci, 2002. 11(11): p. 2727-34. 29.Rawat, U. and M. Rao, Interactions of chaperone alpha-crystallin with the molten globule state of xylose reductase. Implications for reconstitution of the active enzyme. J Biol Chem, 1998. 273(16): p. 9415-23. 30.Raman, B. and C.M. Rao, Chaperone-like activity and temperature-induced structural changes of alpha-crystallin. J Biol Chem, 1997. 272(38): p. 23559-64. 31.Chowdary, T.K., et al., Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J, 2004. 381(Pt 2): p. 379-87. 32.Chen, Y.H., et al., δ–Crystallin interacts in different manner to evolutional related argininosuccinate lyase and α-crystallin at normal condition. J Biol Chem, 2008. submitted. 33.Yu, C.W. and S.H. Chiou, Facile cloning and sequence analysis of goose delta-crystallin gene based on polymerase chain reaction. Biochem Biophys Res Commun, 1993. 192(2): p. 948-53. 34.Piatigorsky, J., Gene sharing in lens and cornea: facts and implications. Prog Retin Eye Res, 1998. 17(2): p. 145-74. 35.Lee, H.J., et al., The effect of N-terminal truncation on double-dimer assembly of goose delta-crystallin. Biochem J, 2005. 392(Pt 3): p. 545-54.
|