|
[1] Y. Alavi, James E. Williamson, Panconnected graphs, Studia Scientiarum Mathematicarum Hungarica, 10 (1-2), pp. 19-22, 1975. [2] John Adrian Bondy, Pancyclic graphs I, Journal of Combinatorial Theory, 11(1), pp. 80-84, 1971. [3] John Adrian Bondy, U.S.R. Murty, Graph Theory, Springer, London, 2008. [4] Chien-Ping Chang, Ting-Yi Sung, Lih-Hsing Hsu, Edge congestion and topological properties of crossed cubes , IEEE Transactions on Parallel and Distributed Systems, 11(1), pp. 64-80, 2000. [5] Chien-Ping Chang, Chia-Ching Wu, Conditional fault diameter of crossed cubes, Journal of Parallel and Distributed Computing, 69(1), pp. 91-99, 2009. [6] Hon-Chan Chen, Tzu-Liang Kung, Lih-Hsing Hsu, Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions, Applied Mathematics and Computation, 217(24), pp. 10058-10065, 2011. [7] Xie-Bin Chen, Edge-fault-tolerant panconnectivity and edge-pancyclicity of the complete graph, Information Sciences, 235(20), pp. 341-346, 2013. [8] Y-Chuang Chen, Chang-Hsiung Tsai, Lih-Hsing Hsu, Jimmy J.M. Tan, On some super fault-tolerant Hamiltonian graphs, Applied Mathematics and Computation, 148(3), pp. 729-741, 2004. [9] Dongqin Cheng, Dachang Guo, Fault-tolerant cycle embedding in the faulty hypercubes, Information Sciences, 253(20), pp. 157-162, 2013. [10] William J. Dally and Brian Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, 2004. [11] Reinhard Diestel, Graph Theory, Springer, New York, 1991. [12] Qiang Dong, Xiaofan Yang, Embedding a long fault-free cycle in a crossed cube with more faulty nodes, Information Processing Letters, 110(11), pp. 464-468, 2010. [13] Kemal. Efe. A variation on the hypercube with lower diameter, IEEE Transactions on Computers, 40(11), pp. 1312-1316, 1991. [14] Kemal Efe, The crossed cube Architecture for parallel computation, IEEE Transactions on Parallel and Distributed Systems, 3(5), pp. 513-524, 1992. [15] Jianxi Fan, Xiaola Lin, Xiaohua Jia, Node-pancyclicity and edge-pancyclicity of crossed cubes, Information Processing Letters, 93(3), pp. 133-138, 2005. [16] Jianxi Fan, Xiaola Lin, Xiaohua Jia, Optimal path embedding in crossed cubes, IEEE Transactions on Parallel and Distributed Systems, 16(12), pp. 1190-1200, 2005. [17] Jianxi Fan, Xiaohua Jia, Xiaola Lin, Complete path embeddings in crossed cubes, Information Sciences, 176(22), pp. 3332-3346, 2006. [18] Jung-Sheng Fu, Conditional fault Hamiltonicity of the complete graph, Information Processing Letters, 107(3-4), pp. 110-113, 2008. [19] Miltos D. Grammatikakis, D. Frank Hsu, and M. Hraetzl, Parallel System Interconnections and Communciations, CRC Press, 2001. [20] Jonathan Gross, Handbook of graph theory, CRC PRESS, 2004. [21] P. A. J. Hilbers, M. R. J. Koopman, and J. L. A. Snepscheut. The twisted cube. In Volume I:Parallel architectures on PARLE: Parallel Architectures and Languages Europe, 1, pp. 152-159, London, UK, 1987. [22] Hao-Shun Hung, Jung-Sheng Fu, Gen-Huey Chen, Fault-free Hamiltonian cycles in crossed cubes with conditional link faults, Information Sciences, 177(24), pp. 5664-5674, 2007. [23] Wen-Tzeng Huang, Yen-Chu Chuang, Jimmy Jiann-Mean Tan, On the Fault-Tolerant Hamiltonicity of Faulty Crossed Cubes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E85-A(6), pp. 1359-1371, 2002. [24] Priyalal Kulasinghe, Connectivity of the crossed cube, Information Processing Letters, 61(4), pp. 221-226, 1997. [25] M. S. Krishnamoorthy, b. Krishnamurthy, Fault diameter of interconnection networks, Computers &; Mathematics with Applications, 13(5-6), pp. 577-582, 1987. [26] Priyalal Kulasinghe, Sald Bettayeb, Embedding Binary Trees into Crossed Cubes, IEEE Transactions on Computers, 44(7), pp. 923-929. 1995. [27] Pao-Lien Lai, Hong-Chun Hsu, Constructing the nearly shortest path in crossed cubes, Information Sciences, 179(14), pp. 2487-2493, 2009. [28] S. M. Larson, P. Cull. The Möbius cubes, IEEE Transactions on Computers, 44(5), pp. 647-659, 1995. [29] Meijie Ma, Guizhen Liu, Jun-Ming Xu, Fault-tolerant embedding of paths in crossed cubes, Theoretical Computer Science, pp. 407(1-3), pp. 110-116, 2008. [30] Jung-Heum Park, Hyeong-Seok Lim, Hee-Chul Kim, Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements, Theoretical Computer Science, 377(1-3), pp. 170-180, 2007. [31] Y. Saad, M. H. Schultz. Topological properties of hypercubes, IEEE Transactions on Computers, 37(7), pp. 867-872, 1988. [32] Dajin Wang, Hamiltonian Embedding in Crossed Cubes with failed links, IEEE Transactions on Parallel and Distributed Systems, 23(11), pp. 2117-2124, 2012. [33] Douglas B. West, Introduction to graph theory, Prentice-Hall, United States of America, 2001. [34] Jun-Ming Xu, Meijie Ma, Min Lü, Paths in Möbius cubes and crossed cubes, Information Processing Letters, 97(3), pp. 94-97, 2006. [35] Ming-Chien Yang, Tseng-Kuei Li, Fault-tolerant cycle-embedding of crossed cubes, Information Processing Letters, 88(4), pp. 149-154, 2003. [36] X. F. Yang , D.J. Evans, G. M. Megson, The locally twisted cubes, International Journal of Computer Mathematics, 82(4), pp. 401-413, 2005
|