跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王能謙
研究生(外文):Neng-Chien Wang
論文名稱:高解析影像與光場影像之去模糊技術
論文名稱(外文):Image Deblurring Technologies for Large Images and Light Field Images
指導教授:丁建均丁建均引用關係
指導教授(外文):Jian-Jiun Ding
口試委員:盧奕璋張佑榕
口試委員(外文):Yi-Chang LuYou-Rong Chang
口試日期:2016-01-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:72
中文關鍵詞:解模糊高解析影像光場四元樹影像繪圖法
外文關鍵詞:deblurringultra-high resolution imagelight fieldquad-treeimage-based rendering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  影像處理是個熱門的研究課題,本篇論文分為兩個研究方向,首先介紹的是模糊影像方面的技術,次為光場相機的應用技術。
目前已有許多影像解模糊的文獻,其中研究可分為二:盲目解迴旋、非盲目解迴旋,這篇主要探討為在高解析影像下有效率的解決非盲目解迴旋的問題。
高解析影像的資料量使得解模糊運算複雜度大量的提升,我們希望能以更短的時間來達成解模糊,所以採用了2009年Krishnan所提出的快速影像反摺積。為了解決高運算複雜度的問題,我們使用了區塊影像解模糊的方法,並透過運算複雜度找出最佳的子影像切割數量,再將子影像拼湊成完整的影像,但是直接拼湊會造成塊狀效應,所以子影像間必須部分重疊且給予線性權重,才能解決塊狀效應。而重疊部分的多寡決定了運算時間及成果,重疊部分越少運算時間越少,但成果越差。為了取得一個平衡,我們選擇了一個特定的重疊大小,能兼顧效率及成果。
另一個要介紹的是光場相機,光場相機單次拍照就能捕捉到一般影像並且額外提供影像的角度及位置資訊,藉此我們能重建場景深度,以此估測出影像內物體的景深。
光場相機是以鏡片陣列組成而產生子影像陣列,我們必須先計算每個子影像的偏移量,才能重建完整影像。其中我們會使用四元樹更精確計算出偏移量,白場影像來補償子影像周圍較暗的問題,使用影像繪圖法增加重建影像品質。
影像重建完成後,我們將以影像分割技術,對影像中的物體個別分割,再以每個物體為單位,藉由其偏移量估測出其景深,以此重建出整個影像的景深圖及每個物件的景深距離。


  Image processing has been developed for a long time. This paper can be separated into two parts. We will introduce the proposed techniques of image deblurring at first. Then the proposed light field deblurring algorithm will be introduced.
The literatures of image deblurring can be categorized into two classes: blind deconvolution and non-blind deconvolution. First, we try to improve the efficiency of non-blind deconvolution in ultra-high resolution images.
The complexity of deblurring is raised in ultra-high resolution images. Therefore, we try to reduce the computation time. We modified the algorithm “Fast Image Deconvolution” proposed by Krishnan in 2009. To reduce complexity, we process the image in block, and find the optimal division that can minimize the complexity. Merging the result of each block directly will cause blocking effect, so it should be overlapped between sub-images with linear weight. The size of overlapping decided our computing time and performance. Less overlapping is more efficient but leads to worse performance. For balance, we choose a specific size of overlapping which give consideration both efficiency and performance.
Another topic is light field deblurring. A light field camera can capture the location and the angle information from a single shot. Thereby, we can reconstruct the depth of scene and stereoscopic images can be obtained.
A light field camera is composed by the array of lens. We will obtain sub-images by every lens. If we want to render the image, we have to obtain the disparity of each microimage pair and hence we can estimate the information of the depth.
At first, we obtain the relationship among microlenses by using regression analysis. Then, we take white image into consideration to compensate the luminance of the edge of every microimage and use quad-trees to compute disparity more precisely. Moreover, we use the image-based rendering technique to improve the quality of the reconstructed image.
After rendering image, we use the technique of image segmentation. Then, every object will be cut apart. We estimate the depth of every object by the disparity, and hence we can reconstruct the depth map of the whole image.



口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLE xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Organization 7
Chapter 2 Blind deconvolution and non-blind deconvolution 8
2.1 Non-Blind deconvolution 8
2.1.1 Direct Inverse Filter 8
2.1.2 Wiener Filter 11
2.1.3 Richardson-Lucy Deconvolution 14
2.1.4 MAP Estimation 16
2.1.5 L2 Prior 17
2.1.6 Norm Prior 17
2.1.7 Fast Image Deconvolution 18
2.2 Blind Deconvolution 22
2.2.1 MAP Approaches 22
2.2.2 Kernel estimation in different regions 24
2.2.3 Motion Deblur with Inertial Measurement Unit (IMU) 27
2.2.4 Image Deblurring by Accelerometers of Mobile Phones 34
Chapter 3 Deblurring of Light field image 40
3.1 Focused plenoptic camera rendering 40
3.2 Pyramid blending 43
3.3 Image rendering techniques and depth recovery 48
Chapter 4 The Proposed Method 52
4.1 Fast Deconvolution in Block 52
4.1.1 Implementation in Block 52
4.1.2 The Size of Overlap 52
4.1.3 The Weight of Overlap 53
4.1.4 The Optimal Number of Sub-images 53
4.1.5 Simulation Results 53
4.1.1 Estimation the Acceleration of Gravity 57
4.1.2 Error Regularization 58
4.1.3 Simulation Results 58
4.2.1 An Integral Method in disparity estimation 60
4.2.2 Depth Estimation 61
4.2.3 Simulation Results 61
Chapter 5 Conclusions and Future Work 67
5.1 Conclusions 67
5.2 Future Work 67
References 69


[1]Asif, Muhammad, Aamir Saeed Malik, and Tae-Sun Choi. "3D shape recovery from image defocus using wavelet analysis." Image Processing, 2005. ICIP 2005. IEEE International Conference on. Vol. 1. IEEE, 2005.
[2]Kundur, Deepa, and Dimitrios Hatzinakos. "Blind image deconvolution." Signal Processing Magazine, IEEE 13.3, 43-64, 1996.
[3]Banham, Mark R., and Aggelos K. Katsaggelos. "Digital image restoration."Signal Processing Magazine, IEEE 14.2, 24-41, 1997.
[4]Chen, Po-Chang, Yung-Lin Chen, and Hsin-Yueh Sung. "Image restoration based on multiple PSF information with applications to phase-coded imaging system." SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2010.
[5]Richardson, William Hadley. "Bayesian-Based Iterative Method of Image Restoration*." JOSA 62.1, 55-59, 1972.
[6]Chen, Po-Chang, et al. "Digital decoding design for phase coded imaging system." SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2009.
[7]Tanaka, Masayuki, Kenichi Yoneji, and Masatoshi Okutomi. "High-usability deblurring filter." Consumer Electronics, 2008. ISCE 2008. IEEE International Symposium on. IEEE, 2008.
[8]Levin, Anat. "Blind motion deblurring using image statistics." Advances in Neural Information Processing Systems. 2006.
[9]Levin, Anat, et al. "Image and depth from a conventional camera with a coded aperture." ACM Transactions on Graphics (TOG). Vol. 26. No. 3. ACM, 2007.
[10]Shan, Qi, Jiaya Jia, and Aseem Agarwala. "High-quality motion deblurring from a single image." ACM Transactions on Graphics (TOG). Vol. 27. No. 3. ACM, 2008.
[11]Shen, Chih-Tsung, Wen-Liang Hwang, and Soo-Chang Pei. "Spatially-varying out-of-focus image deblurring with L1-2 optimization and a guided blur map."Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012.
[12]Krishnan, Dilip, and Rob Fergus. "Fast image deconvolution using hyper-Laplacian priors." Advances in Neural Information Processing Systems. 2009.
[13]Stewart, Charles V. "Robust parameter estimation in computer vision." SIAM review, 41.3, 513-537, 1999.
[14]Geman, Donald, and George Reynolds. "Constrained restoration and the recovery of discontinuities." IEEE Transactions on Pattern Analysis & Machine Intelligence 3, 367-383, 1992.
[15]Geman, Donald, and Chengda Yang. "Nonlinear image recovery with half-quadratic regularization." Image Processing, IEEE Transactions on 4.7, 932-946, 1995.
[16]Wang, Yilun, et al. "A new alternating minimization algorithm for total variation image reconstruction." SIAM Journal on Imaging Sciences 1.3, 248-272, 2008.
[17]Wright, Stephen J., Robert D. Nowak, and Mario AT Figueiredo. "Sparse reconstruction by separable approximation." Signal Processing, IEEE Transactions on 57.7: 2479-2493, 2009.
[18]Weisstein, Eric W. "Cubic formula." omega, 86, 87, 2002.
[19]Weisstein, Eric W. "Quartic equation." 2002.
[20]Levin, Anat, et al. "Efficient marginal likelihood optimization in blind deconvolution." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.
[21]Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm." Journal of the royal statistical society. Series B (methodological) : 1-38, 1977.
[22]Levin, Anat, et al. "Understanding and evaluating blind deconvolution algorithms." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.
[23]Joshi, Neel, et al. "Image deblurring using inertial measurement sensors." ACM Transactions on Graphics (TOG). Vol. 29. No. 4. ACM, 2010.
[24]Hu, Zhe, and Ming-Hsuan Yang. "Good regions to deblur." Computer Vision–ECCV 2012. Springer Berlin Heidelberg, 59-72, 2012.
[25]Adelson, Edward H., and James R. Bergen. "The plenoptic function and the elements of early vision." Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology, 1991.
[26]Georgiev, Todor, and Andrew Lumsdaine. "Focused plenoptic camera and rendering." Journal of Electronic Imaging 19.2: 021106-021106, 2010.
[27]Lumsdaine, Andrew, and Todor Georgiev. "Full resolution lightfield rendering."Indiana University and Adobe Systems, Tech. Rep, 2008.
[28]Burt, Peter J., and Edward H. Adelson. "A multiresolution spline with application to image mosaics." ACM Transactions on Graphics (TOG) 2.4: 217-236, 1983.
[29]Chang, Hao-Hsuan. "運用手機加速規之影像去模糊技術." 國立臺灣大學電信工程學研究所學位論文, 1-97, 2015.
[30]Krishnan, Dilip, Terence Tay, and Rob Fergus. "Blind deconvolution using a normalized sparsity measure." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.
[31]Cho, Taeg Sang, et al. "Blur kernel estimation using the radon transform."Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.
[32]Chuang, Shih-Chung. "光場相機之子影像組合及深度重建技術." 國立臺灣大學電信工程學研究所學位論文, 1-58, 2015.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top