Aalen, R.B., Wildhagen, M., Sto, I.M., and Butenko, M.A. (2013). IDA: a peptide ligand regulating cell separation processes in Arabidopsis. Journal of experimental botany 64, 5253-5261.
Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant journal 50, 1007-1019.
Alonso, J.M., and Ecker, J.R. (2001). The ethylene pathway: a paradigm for plant hormone signaling and interaction. Science''s STKE : signal transduction knowledge environment 2001, re1.
Arora, A. (2005). Ethylene receptors and molecular mechanism of ethylene sensitivity in plants. Current science 89, 1348-1361.
Avila-Ospina, L., Moison, M., Yoshimoto, K., and Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of experimental botany 65, 3799-3811.
Bleecker, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant cell 9, 1169-1179.
Brumos, J., Alonso, J.M., and Stepanova, A.N. (2014). Genetic aspects of auxin biosynthesis and its regulation. Physiol Plant 151, 3-12.
Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.E., Amundsen, S.S., Mandal, A., and Aalen, R.B. (2003). Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant cell 15, 2296-2307.
Cai, S., and Lashbrook, C.C. (2008). Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant physiology 146, 1305-1321.
Castillejo, C., and Pelaz, S. (2008). The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Current biology : CB 18, 1338-1343.
Chang, K.N., Zhong, S., Weirauch, M.T., Hon, G., Pelizzola, M., Li, H., Huang, S.S., Schmitz, R.J., Urich, M.A., Kuo, D., Nery, J.R., Qiao, H., Yang, A., Jamali, A., Chen, H., Ideker, T., Ren, B., Bar-Joseph, Z., Hughes, T.R., and Ecker, J.R. (2013). Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2, e00675.
Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I., and Yang, C.H. (2011). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant journal 68, 168-185.
Chen, W.H., Li, P.F., Chen, M.K., Lee, Y.I., and Yang, C.H. (2015). FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission. Plant physiology 168, 1666-1683.
Cho, S.K., Larue, C.T., Chevalier, D., Wang, H., Jinn, T.L., Zhang, S., and Walker, J.C. (2008). Regulation of floral organ abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 105, 15629-15634.
Coll, N.S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J.L., and Epple, P. (2010). Arabidopsis type I metacaspases control cell death. Science 330, 1393-1397.
Ellis, C.M., Nagpal, P., Young, J.C., Hagen, G., Guilfoyle, T.J., and Reed, J.W. (2005). AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132, 4563-4574.
Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. (2000). The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. The Plant cell 12, 183-198.
Fu, M., Kang, H.K., Son, S.H., Kim, S.K., and Nam, K.H. (2014). A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant & cell physiology 55, 1892-1904.
Guo, H., and Ecker, J.R. (2004). The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7, 40-49.
Hiratsu, K., Matsui, K., Koyama, T., and Ohme-Takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant journal : for cell and molecular biology 34, 733-739.
Hwang, I., Sheen, J., and Muller, B. (2012). Cytokinin signaling networks. Annu Rev Plant Biol 63, 353-380.
Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant & cell physiology 50, 970-975.
Jinn, T.L., Stone, J.M., and Walker, J.C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & development 14, 108-117.
Ju, C., Yoon, G.M., Shemansky, J.M., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.L., Cooper, B., Kieber, J.J., and Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109, 19486-19491.
Kandasamy, M.K., Deal, R.B., McKinney, E.C., and Meagher, R.B. (2005a). Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. The Plant journal : for cell and molecular biology 41, 845-858.
Kandasamy, M.K., McKinney, E.C., Deal, R.B., and Meagher, R.B. (2005b). Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant physiology 138, 2019-2032.
Kim, J.I., Murphy, A.S., Baek, D., Lee, S.W., Yun, D.J., Bressan, R.A., and Narasimhan, M.L. (2011). YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of experimental botany 62, 3981-3992.
Koyama, T. (2014). The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front Plant Sci 5, 650.
Lewis, M.W., Leslie, M.E., and Liljegren, S.J. (2006). Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol 9, 59-65.
Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F., and Guo, H. (2015). EIN2-Directed Translational Regulation of Ethylene Signaling in Arabidopsis. Cell 163, 670-683.
Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. The Plant cell 25, 3311-3328.
Marin-Gonzalez, E., Matias-Hernandez, L., Aguilar-Jaramillo, A.E., Lee, J.H., Ahn, J.H., Suarez-Lopez, P., and Pelaz, S. (2015). SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures. Plant physiology 169, 1214-1224.
Matias-Hernandez, L., Aguilar-Jaramillo, A.E., Marin-Gonzalez, E., Suarez-Lopez, P., and Pelaz, S. (2014). RAV genes: regulation of floral induction and beyond. Ann Bot 114, 1459-1470.
McKim, S.M., Stenvik, G.E., Butenko, M.A., Kristiansen, W., Cho, S.K., Hepworth, S.R., Aalen, R.B., and Haughn, G.W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135, 1537-1546.
Minina, E.A., Stael, S., Van Breusegem, F., and Bozhkov, P.V. (2014). Plant metacaspase activation and activity. Methods Mol Biol 1133, 237-253.
Osnato, M., Castillejo, C., Matias-Hernandez, L., and Pelaz, S. (2012). TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3, 808.
Patharkar, O.R., and Walker, J.C. (2015). Floral organ abscission is regulated by a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America 112, 2906-2911.
Patterson, S.E., and Bleecker, A.B. (2004). Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant physiology 134, 194-203.
Riefler, M., Novak, O., Strnad, M., and Schmulling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant cell 18, 40-54.
Rogers, H.J. (2013). From models to ornamentals: how is flower senescence regulated? Plant Molecular Biology 82, 563-574.
Schenk, P.M., Kazan, K., Rusu, A.G., Manners, J.M., and Maclean, D.J. (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. (Plant Physiology Biochemical).
Sekhon, R.S., Childs, K.L., Santoro, N., Foster, C.E., Buell, C.R., de Leon, N., and Kaeppler, S.M. (2012). Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant physiology 159, 1730-1744.
Shi, H., Reiter, R.J., Tan, D.X., and Chan, Z. (2015). INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J Pineal Res 58, 26-33.
Stepanova, A.N., and Alonso, J.M. (2005). Ethylene signaling pathway. Science''s STKE : signal transduction knowledge environment 2005, cm3.
Swaminathan, K., Peterson, K., and Jack, T. (2008). The plant B3 superfamily. Trends Plant Sci 13, 647-655.
Tsiatsiani, L., Timmerman, E., De Bock, P.J., Vercammen, D., Stael, S., van de Cotte, B., Staes, A., Goethals, M., Beunens, T., Van Damme, P., Gevaert, K., and Van Breusegem, F. (2013). The Arabidopsis metacaspase9 degradome. The Plant cell 25, 2831-2847.
van Doorn, W.G., and Kamdee, C. (2014). Flower opening and closure: an update. Journal of experimental botany 65, 5749-5757.
Wagstaff, C., Yang, T.J., Stead, A.D., Buchanan-Wollaston, V., and Roberts, J.A. (2009). A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. The Plant journal : for cell and molecular biology 57, 690-705.
Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945-950.
Woltering, E.J., Somhorst, D., and Van Der Veer, P. (1995). The Role of Ethylene in Interorgan Signaling during Flower Senescence. Plant physiology 109, 1219-1225.
Woo, H.R., Kim, J.H., Kim, J., Kim, J., Lee, U., Song, I.J., Kim, J.H., Lee, H.Y., Nam, H.G., and Lim, P.O. (2010). The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of experimental botany 61, 3947-3957.
Xu, A., Zhang, W., and Wen, C.K. (2014). ENHANCING ctr1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC plant biology 14, 48.
Yasumura, Y., Pierik, R., Kelly, S., Sakuta, M., Voesenek, L.A., and Harberd, N.P. (2015). An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling. Plant physiology 169, 283-298.
Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., and Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America 106, 21431-21436.
謝東霖. (2011). 文心蘭中SVP兩個SVP同源基因OnSVP1/2參與調控花器老化即凋落與開花時間之功能性分析.碩士論文Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., and Yanofsky, M.F. (2000). MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. The Plant journal 24, 457-466.
Bleecker, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant cell 9, 1169-1179.
Chen, M.K., Lee, P.F., and Yang, C.H. (2011a). Delay of flower senescence and abscission in Arabidopsis transformed with an FOREVER YOUNG FLOWER homolog from Oncidium orchid. Plant signaling & behavior 6, 1841-1843.
Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I., and Yang, C.H. (2011b). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant journal : for cell and molecular biology 68, 168-185.
Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. (2000). The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. The Plant cell 12, 183-198.
Fernandez, D.E., Wang, C.T., Zheng, Y., Adamczyk, B.J., Singhal, R., Hall, P.K., and Perry, S.E. (2014). The MADS-Domain Factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, Are Necessary to Block Floral Gene Expression during the Vegetative Phase. Plant physiology 165, 1591-1603.
Fornara, F., Gregis, V., Pelucchi, N., Colombo, L., and Kater, M. (2008). The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. Journal of experimental botany 59, 2181-2190.
Hiratsu, K., Matsui, K., Koyama, T., and Ohme-Takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant journal 34, 733-739.
Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS.
Hwan Lee, J., Sook Chung, K., Kim, S.K., and Ahn, J.H. (2014). Post-translational regulation of short vegetative phase as a major mechanism for thermoregulation of flowering. Plant signaling & behavior 9, e28193.
Jaudal, M., Monash, J., Zhang, L., Wen, J., Mysore, K.S., Macknight, R., and Putterill, J. (2014). Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago. Journal of experimental botany 65, 429-442.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. (J Exp Bot. ).
Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADS-domain proteins: structural modularity protein interactions and network evolution in land plants.
Lee, J.H., Park, S.H., Lee, J.S., and Ahn, J.H. (2007). A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta 1769, 455-461.
Lee, S., Choi, S.C., and An, G. (2008). Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. The Plant journal : for cell and molecular biology 54, 93-105.
Li, Z.M., Zhang, J.Z., Mei, L., Deng, X.X., Hu, C.G., and Yao, J.L. (2010). PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74, 129-142.
Marin-Gonzalez, E., Matias-Hernandez, L., Aguilar-Jaramillo, A.E., Lee, J.H., Ahn, J.H., Suarez-Lopez, P., and Pelaz, S. (2015). SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures. Plant physiology 169, 1214-1224.
Masiero, S., Li, M.A., Will, I., Hartmann, U., Saedler, H., Huijser, P., Schwarz-Sommer, Z., and Sommer, H. (2004). INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131, 5981-5990.
Tao, Z., Shen, L., Liu, C., Liu, L., Yan, Y., and Yu, H. (2012). Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. The Plant journal 70, 549-561.
Theissen, G. (2001). Development of floral organ identity: stories from the MADS house. (Curr Opin Plant Biol).
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43, 484-516.
Trevaskis, B., Tadege, M., Hemming, M.N., Peacock, W.J., Dennis, E.S., and Sheldon, C. (2007). Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant physiology 143, 225-235.
Wingen, L.U., Munster, T., Faigl, W., Deleu, W., Sommer, H., Saedler, H., and Theissen, G. (2012). Molecular genetic basis of pod corn (Tunicate maize). Proceedings of the National Academy of Sciences of the United States of America 109, 7115-7120.