跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳偉翰
研究生(外文):Wei-Han Chen
論文名稱:FYF 藉由調控EDF 基因控制阿拉伯芥花器老化和脫落及蘭花中FYF、SVP 同源基因的功能性分析
論文名稱(外文):FOREVER YOUNG FLOWER (FYF) Regulates Ethylene Response DNA Binding Factors (EDFs) to Control Arabidopsis Floral Organ Senescence/Abscission, and Functional Analysis of FYF, Short Vegetative Phase (SVP) Orthologs From Orchids
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chan-hsein Yang
口試委員:余天心林彩雲靳宗洛楊俊逸
口試委員(外文):Tien-Shin YuTsai-Yun LinTsung-Luo JinnJun-Yi Yang
口試日期:2016-01-19
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:101
中文關鍵詞:乙烯老化脫落延緩老化
外文關鍵詞:Ethylenesenescenceabscissionforever young flowershort vegetative phase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究主要探討FYF和EDFs基因之間在調控花器老化脫落上的關係。EDF1/2/3/4::GUS 轉殖株中成熟花的GUS訊號較強,年輕的花中較弱。此情況和FYF::GUS相反。35S::EDF1/2/3/4 及EDF1/2/3/4+SRDX轉殖株都會提早花器的老化及脫落,並且可促老化相關基因SAG12、AtMCs和VPEs的表現,結果指出EDF1/2/3/4可作為一轉錄抑制子促進花器的老化及脫落。35S::EDF1/2/3/4+SRDX可以挽救etr1-1、ein2-1和35S::FYF植株中延緩花器老化及脫落的現象,並且在EDF1/2/3/4::GUS轉殖株中大量表現FYF可降低GUS基因的表現,顯示EDF1/2/3/4在乙烯訊息傳遞路中位於FYF的下游。這些結果都指出,FYF可藉由抑制轉錄抑制子EDF1/2/3/4來延緩花器的老化及脫落。
為了研究蘭花中FYF及SVP的同源基因,分別從Oncidium Gower Ramsey和Cattleya Intermedia選殖出OnSVP1/2、CaFYF1/2及CaSVP。35::OnSVP1/2+SRDX轉基因阿拉伯芥透過抑制EDF1/2/3/4、BOP2、IDA、HAESA延緩花器的老化和脫落。即使經過乙烯的處理,35::OnSVP1/2+SRDX轉基因阿拉伯芥仍然可延緩花器的老化及掉落,顯示轉基因植物為乙烯不敏感型植株。35::CaSVP+SRDX、35::CaSVP、35::CaFYF1/2+SRDX 、35::CaFYF1/2轉基因阿拉伯芥也可藉由抑制乙烯及離層訊息傳徑,達到延緩花器的老化及脫落。我們的結果顯示,從蘭花中選殖出的FYF及SVP同源基因在轉基因阿拉伯芥中可作為一轉錄抑制子延緩花器的老化及脫落。


In this study, we analyzed the relationships between Forever young flower (FYF) and Ethylene response DNA binding factors (EDFs) in regulating flower senescence/abscission. Strong GUS staining was detected in the mature flower and staining decreased in young flowers of the EDF1/2/3/4::GUS transgenic Arabidopsis. This result was opposite to FYF::GUS plants. 35S:EDF1/2/3/4 and 35S::EDF1/2/3/4+SRDX caused similar promotion of flower senescence/abscission and the activation of the senescence-associated genes SAG12, AtMCs and VPEs, indicating that EDF1/2/3/4 function as repressors in promoting senescence/abscission. EDF1/2/3/4 function downstream of FYF in the ethylene signaling pathway, and this finding was further supported by the observations that 35S::EDF1/2/3/4+SRDX rescue the delayed senescence/abscission phenotypes in the etr1 and ein2 mutants and in 35S::FYF plants. The 35S::FYF significantly reduced GUS expression in EDF1/2/3/4::GUS plants. These results indicate that FYF delayed flower senescence/abscission by repressing transcriptional repressor EDF1/2/3/4. To analyze the FYF and SVP orthologs from orchid, Oncidium short vegetative phase1/2 (OnSVP1/2), Cattleya forever young flower1/2(CaFYF1/2) and Cattleya short vegetative phase (CaSVP) were identified from Oncidium Gower Ramsey and Cattleya intermedia. 35::OnSVP1/2+SRDX delayed flower senescence/abscission by down-regulating EDF1/2/3/4, BOP2, IDA, HAESA in transgenic Arabidopsis. Furthermore, 35::OnSVP1/2+SRDX transgenic Arabidopsis were insensitive to ethylene. 35::CaSVP+SRDX, 35::CaSVP, 35::CaFYF1/2+SRDX and 35::CaFYF1/2 also delayed flower senescence/abscission by down-regulating ethylene and abscission signaling in transgenic Arabidopsis. Our results revealed that FYF and SVP orthologs from orchids function as a repressor to delay flower senescence/abscission in transgenic Arabidopsis.

摘要………………………………………………………………………………i
ABSTRACT…………………………………………………………………………...ii
前言…………………………………………………………………….……………1-1
材料方法…………………………………………………………………………….1-4
結果………………………………………………………………………………...1-12
一、 EDF1/2/3/4表現部位分析、分子選殖及載體構築……………......….1-12
二、利用EDF1/2/3/4啟動子驅動GUS報導基因表現,GUS蛋白活性隨著花朵的成熟而上升……………………………………………………………...1-12
三、異位表現EDF1/2/3/4和EDF1/2/3/4+SRDX促進花朵老化及脫落….1-13
四、 EDF1/2/3/4和EDF1/2/3/4+SRDX促進程式性細胞死亡相關基因導致花器提早老化脫落……………………………………………………………...1-13
五、異位表現EDF2+SRDX在雄不稔突變株dad1中,仍會促進花器老化及脫落,顯示此促進老化脫落之情況並非無法受孕所造成…………………1-14
六、異位表現EDF1/2/3/4+SRDX可挽救乙烯訊息傳遞突變株etr1-1所造成的花器延緩老化脫落的情況……………………………………………….. 1-14
七、異位表現EDF1/2/3/4+SRDX可挽救乙烯訊息傳遞突變株ein2-1所造成的花器延緩老化脫落的情況………………………………………...………1-15
八、異位表現EDF1/2+SRDX在35S::FYF轉基因植物中,可挽救因異位表現FYF所造成的延緩花器老化脫落的情況…………………………..……1-15
九、異位表現FYF 於EDF1/2/3/4 啟動子驅動GUS 報導基因的轉基因植物中,報導基因GUS 訊號受到抑制…………………………..………………1-15
討論………………………………………………………………………………...1-17
參考文獻…………………………………………………………………………...1-20
圖表………………………………………………………………………………...1-24
表1-1.本篇文章所使用之PCR引子(primer)序列…………………….….....1-24
表1-2.異位表現EDF1/2/3/4花朵老化脫落統計……………………….......1-26
表1-3.異位表現EDF1/2/3/4+SRDX花朵老化脫落統計……………….......1-26
表1-4.etr1-1突變株異位表現EDF1/2/3/4+SRDX花朵老化脫落統計.........1-27
表1-5.ein2-1突變株異位表現EDF1/2/3/4+SRDX花朵老化脫落統計........1-27
表1-6.異位表現FYF之轉基因植物,額外異位表現EDF1/2+SRDX花朵老化脫落統計……………………………………………………………………...1-38
圖1-1.EDF1/2/3/4於野生型阿拉伯芥中部位表現情況…………………....1-39
圖1-2.EDF1/2/3/4啟動子驅動GUS報導基因之轉基因植物,GUS活性偵測……………………………………………………………...........................1-30
圖1-3.EDF1/2/3/4之表現隨著花朵成熟而上升…………............................1-31
圖1-4.35S::EDF1/2/3/4和35S::EDF1/2/3/4+SRDX轉基因植物,花器提早老化脫落,並且有無法受孕的情況………….....................................................1-32
圖1-5.異位表現EDF1/2/3/4造成老化指標基因SAG12上升......................1-33
圖1-6.異位表現EDF1/2/3/4+SRDX造成老化指標基因SAG12上升..........1-34
圖1-7.異位表現EDF1/2/3/4和EDF1/2/3/4+SRDX造成程式性細胞死亡相關基因表現量上升………...................................................................................1-35
圖1-8.異位表現EDF2+SRDX在雄不稔突變株dad1中,仍會促進花器老化及脫落………...................................................................................................1-36
圖1-9.異位表現EDF1/2/3/4+SRDX可挽救etr1-1突變株花器延緩老化脫落的情況……………...........................................................................................1-37
圖1-10.異位表現EDF1/2/3/4+SRDX可挽救ein2-1突變株花器延緩老化脫落的情況 .....1-48
圖1-11.異位表現EDF1/2+SRDX可促進35S::FYF轉基因植物花朵的老化脫落,以EDF1/2/3/4啟動子驅動GUS報導基因之轉基因植物,GUS活性可因額外異位表現FYF而降低 .....1-39
圖1-12.FYF可藉由促進FUF1基因,抑制EDF1/2/3/4延緩花器老化脫落.1-40
附圖1-1.目標基因載體構築示意圖................................................................1-41
附圖1-2.EDF1/2/3/4 cDNA分子選質與構築之示意膠圖.............................1-42
附圖1-3.EDF1/2/3/4啟動子選質與構築之示意膠圖....................................1-43
附圖1-4.EDF1/2/3/4於eFP browser中各部位表現情況...............................1-44
附圖1-5.EDF1/2/3/4 cDNA序列比對結果....................................................1-45
附圖1-6.pGEM®-T Easy vector之圖譜............................................................1-46
附圖1-7.pEpyon-01K之圖譜...........................................................................1-47
附圖1-8.pEpyon-22K之圖譜..........................................................................1-58
附圖1-9.pEpyon-2aK之圖譜...........................................................................1-59
附圖1-10.pEpyon-2bK之圖譜........................................................................1-50
附圖 1-11.Gen-KB DNA Ladder.....................................................................1-51
前言…………………………………………………………………….……………2-1
材料方法…………………………………………….................................................2-4
結果……………………………………………………………………………….....2-7
一、從嘉德麗雅蘭中選殖出FYF同源基因………………...…………….…..2-7
二、CaFYF1/2於嘉德麗雅蘭中各部位分析………………………………….2-7
三、異位表現CaFYF1/2、CaFYF1/2+SRDX和CaFYF1/2+VP16促進轉基因植物提早開花…. ……………………………………………………..…….....2-7
四、異位表現CaFYF1/2、CaFYF1/2+SRDX延緩轉基因植物花朵老化脫落,異位表現CaFYF1/2+VP16促進轉基因植物花朵老化脫落………………...2-8
五、異位表現CaFYF1/2、CaFYF1/2+SRDX轉基因植物,為乙烯不敏感型植株………………………………………………….………………..…...….......2-8
六、異位表現CaFYF1/2、CaFYF1/2+SRDX轉基因植物,抑制乙烯訊息傳遞路徑及花器凋落訊息傳遞路徑之基因……………………………..…..…… 2-8
七、從嘉德麗雅蘭及文心蘭中選殖出SVP同源基因………………….....…..2-8八、利用即時定量PCR偵測CaSVP基因於嘉德麗雅蘭各部位表現情況….2-9九、利用即時定量PCR偵測OnSVP1/2基因於文心蘭各部位表現情況…....2-9
十、異位表現AtSVP、OnSVP1/2+SRDX、CaSVP和CaSVP+SRDX抑制花器老化脫落,異位表現OnSVP1 /2∆II+VP16和CaSVP+VP16促進花器老化脫落…………………………………………………………..………..…….........2-9
十一、異位表現AtSVP、OnSVP1/2+SRDX、CaSVP和CaSVP+SRDX,為乙烯不敏感型植株………………………………………………………..….....2-10
十二、異位表現AtSVP抑制乙烯訊息傳遞路徑及離層分化起始傳遞路徑之基因………………………………………………………………………….. 2-10
十三、異位表現OnSVP1/2+SRDX抑制乙烯訊息傳遞路徑及離層分化起始傳遞路徑之基因………………………………………………………………...2-10
十四、異位表現CaSVP和CaSVP+SRDX抑制乙烯訊息傳遞路徑及離層分化起始傳遞路徑之基因………………………………………………………...2-10
討論…………………...…………………………………………………………... 2-11
參考文獻…………………………………………………………………………...2-15
圖表………………………………………………………………………………...2-17
表2-1.本篇文章所使用之PCR引子(primer)序列…………………….….....2-17
表2-2.異位表現CaFYF1、CaFYF1+SRDX和CaFYF1+VP16轉基因植物開花時間及葉片數統計…………………………………………………….......2-19
表2-3.異位表現CaFYF2、CaFYF2+SRDX和CaFYF2+VP16轉基因植物開花時間及葉片數統計…………………………………………………….......2-19
表2-4.異位表現CaFYF1、CaFYF1+SRDX和CaFYF1+VP16花朵老化脫落朵數統計..........………………………………………..………………….......2-20
表2-5.異位表現CaFYF2、CaFYF2+SRDX和CaFYF2+VP16花朵老化脫落朵數統計.........………………………………………..…………………........2-20
表2-6.異位表現AtSVP、 AtSVP ∆II、 OnSVP1/2+SRDX、OnSVP1/2 ∆II +VP16、CaSVP、CaSVP+SRDX和CaSVP+VP16花朵老化脫落朵數統計………....2-21
圖2-1.嘉德麗雅蘭(Cattleya Intermedia)、文心蘭(Oncidium Gower Ramsey)及阿拉伯芥(Arabidopsis thaliana)中FYF基因的親緣演化關係,序列相似度比對……………………………………………………………...........................2-22
圖2-2.CaFYF1/2於嘉德麗雅蘭各部位表現情況…………..........................2-23
圖2-3.異位表現CaFYF1/2、CaFYF2/1+SRDX和CaFYF1/2+VP16造成植株早開花…………......……………………………………….............................2-24
圖2-4.異位表現CaFYF1/2、CaFYF2/1+SRDX之轉基因植物延遲花器老化脫落,為乙烯不敏感型植株,異位表現CaFYF2/1+VP16促進花器老化脫落………….......................................................................................................2-25
圖2-5.異位表現CaFYF1/2、CaFYF1/2+SRDX之轉基因植物,抑制乙烯訊息傳遞路徑下游基因EDF1/2/3/4和脫落訊息傳遞路徑中BOP1/2、IDA基因.......................................................................................................................2-26
圖2-6.嘉德麗雅蘭、文心蘭及阿拉伯芥中SVP基因的親緣演化關係,序列相似度比對………...........................................................................................2-27
圖2-7.CaSVP於嘉德麗雅蘭各部位表現情況………....................................2-38
圖2-8.OnSVP1/2於文心蘭南茜各部位表現情況……………......................2-29
圖2-9.異位表現AtSVP、OnSVP1/2+SRDX、CaSVP和CaSVP+SRDX延遲花器老化脫落,異位表現OnSVP1/2 ∆II+VP16和CaSVP+SRDX促進花器老化脫落……………...............................................................................................2-30
圖2-10.異位表現AtSVP、OnSVP1/2+SRDX、CaSVP及CaSVP+SRDX之轉基因植物,為乙烯不敏感型植株.....................................................................2-31
圖2-11.異位表現AtSVP之轉基因植物,抑制乙烯訊息傳遞路徑下游基因ERF1、EDF1/3和脫落訊息傳遞路徑中IDA、HAESA和HSL2基因.......2-32
圖2-12.異位表現OnSVP1/2+SRDX之轉基因植物,抑制乙烯訊息傳遞路徑下游基因ERF1、EDF1/2/3/4和脫落訊息傳遞路徑中BOP2、IDA和HAESA基因...................................................................................................................2-33
圖2-13.異位表現CaSVP+SRDX之轉基因植物,抑制乙烯訊息傳遞路徑下游基因EDF1/3和脫落訊息傳遞路徑中IDA基因.............................................2-34
圖2-14.假說圖示..............................................................................................2-35
附圖2-1.目標基因構築流程電泳圖................................................................2-36
附圖2-2.目標基因構築流程電泳圖................................................................2-37
附圖2-3.CaFYF1 核甘酸序列及胺基酸序列................................................2-48
附圖2-3.CaFYF2 核甘酸序列及胺基酸序列................................................2-39
附圖2-3.CaSVP 核甘酸序列及胺基酸序列..................................................2-40


Aalen, R.B., Wildhagen, M., Sto, I.M., and Butenko, M.A. (2013). IDA: a peptide ligand regulating cell separation processes in Arabidopsis. Journal of experimental botany 64, 5253-5261.
Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant journal 50, 1007-1019.
Alonso, J.M., and Ecker, J.R. (2001). The ethylene pathway: a paradigm for plant hormone signaling and interaction. Science''s STKE : signal transduction knowledge environment 2001, re1.
Arora, A. (2005). Ethylene receptors and molecular mechanism of ethylene sensitivity in plants. Current science 89, 1348-1361.
Avila-Ospina, L., Moison, M., Yoshimoto, K., and Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of experimental botany 65, 3799-3811.
Bleecker, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant cell 9, 1169-1179.
Brumos, J., Alonso, J.M., and Stepanova, A.N. (2014). Genetic aspects of auxin biosynthesis and its regulation. Physiol Plant 151, 3-12.
Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.E., Amundsen, S.S., Mandal, A., and Aalen, R.B. (2003). Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant cell 15, 2296-2307.
Cai, S., and Lashbrook, C.C. (2008). Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant physiology 146, 1305-1321.
Castillejo, C., and Pelaz, S. (2008). The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Current biology : CB 18, 1338-1343.
Chang, K.N., Zhong, S., Weirauch, M.T., Hon, G., Pelizzola, M., Li, H., Huang, S.S., Schmitz, R.J., Urich, M.A., Kuo, D., Nery, J.R., Qiao, H., Yang, A., Jamali, A., Chen, H., Ideker, T., Ren, B., Bar-Joseph, Z., Hughes, T.R., and Ecker, J.R. (2013). Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2, e00675.
Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I., and Yang, C.H. (2011). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant journal 68, 168-185.
Chen, W.H., Li, P.F., Chen, M.K., Lee, Y.I., and Yang, C.H. (2015). FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission. Plant physiology 168, 1666-1683.
Cho, S.K., Larue, C.T., Chevalier, D., Wang, H., Jinn, T.L., Zhang, S., and Walker, J.C. (2008). Regulation of floral organ abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 105, 15629-15634.
Coll, N.S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J.L., and Epple, P. (2010). Arabidopsis type I metacaspases control cell death. Science 330, 1393-1397.
Ellis, C.M., Nagpal, P., Young, J.C., Hagen, G., Guilfoyle, T.J., and Reed, J.W. (2005). AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132, 4563-4574.
Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. (2000). The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. The Plant cell 12, 183-198.
Fu, M., Kang, H.K., Son, S.H., Kim, S.K., and Nam, K.H. (2014). A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant & cell physiology 55, 1892-1904.
Guo, H., and Ecker, J.R. (2004). The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7, 40-49.
Hiratsu, K., Matsui, K., Koyama, T., and Ohme-Takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant journal : for cell and molecular biology 34, 733-739.
Hwang, I., Sheen, J., and Muller, B. (2012). Cytokinin signaling networks. Annu Rev Plant Biol 63, 353-380.
Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant & cell physiology 50, 970-975.
Jinn, T.L., Stone, J.M., and Walker, J.C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & development 14, 108-117.
Ju, C., Yoon, G.M., Shemansky, J.M., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.L., Cooper, B., Kieber, J.J., and Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109, 19486-19491.
Kandasamy, M.K., Deal, R.B., McKinney, E.C., and Meagher, R.B. (2005a). Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. The Plant journal : for cell and molecular biology 41, 845-858.
Kandasamy, M.K., McKinney, E.C., Deal, R.B., and Meagher, R.B. (2005b). Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant physiology 138, 2019-2032.
Kim, J.I., Murphy, A.S., Baek, D., Lee, S.W., Yun, D.J., Bressan, R.A., and Narasimhan, M.L. (2011). YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of experimental botany 62, 3981-3992.
Koyama, T. (2014). The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front Plant Sci 5, 650.
Lewis, M.W., Leslie, M.E., and Liljegren, S.J. (2006). Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol 9, 59-65.
Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F., and Guo, H. (2015). EIN2-Directed Translational Regulation of Ethylene Signaling in Arabidopsis. Cell 163, 670-683.
Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. The Plant cell 25, 3311-3328.
Marin-Gonzalez, E., Matias-Hernandez, L., Aguilar-Jaramillo, A.E., Lee, J.H., Ahn, J.H., Suarez-Lopez, P., and Pelaz, S. (2015). SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures. Plant physiology 169, 1214-1224.
Matias-Hernandez, L., Aguilar-Jaramillo, A.E., Marin-Gonzalez, E., Suarez-Lopez, P., and Pelaz, S. (2014). RAV genes: regulation of floral induction and beyond. Ann Bot 114, 1459-1470.
McKim, S.M., Stenvik, G.E., Butenko, M.A., Kristiansen, W., Cho, S.K., Hepworth, S.R., Aalen, R.B., and Haughn, G.W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135, 1537-1546.
Minina, E.A., Stael, S., Van Breusegem, F., and Bozhkov, P.V. (2014). Plant metacaspase activation and activity. Methods Mol Biol 1133, 237-253.
Osnato, M., Castillejo, C., Matias-Hernandez, L., and Pelaz, S. (2012). TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3, 808.
Patharkar, O.R., and Walker, J.C. (2015). Floral organ abscission is regulated by a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America 112, 2906-2911.
Patterson, S.E., and Bleecker, A.B. (2004). Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant physiology 134, 194-203.
Riefler, M., Novak, O., Strnad, M., and Schmulling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant cell 18, 40-54.
Rogers, H.J. (2013). From models to ornamentals: how is flower senescence regulated? Plant Molecular Biology 82, 563-574.
Schenk, P.M., Kazan, K., Rusu, A.G., Manners, J.M., and Maclean, D.J. (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. (Plant Physiology Biochemical).
Sekhon, R.S., Childs, K.L., Santoro, N., Foster, C.E., Buell, C.R., de Leon, N., and Kaeppler, S.M. (2012). Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant physiology 159, 1730-1744.
Shi, H., Reiter, R.J., Tan, D.X., and Chan, Z. (2015). INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J Pineal Res 58, 26-33.
Stepanova, A.N., and Alonso, J.M. (2005). Ethylene signaling pathway. Science''s STKE : signal transduction knowledge environment 2005, cm3.
Swaminathan, K., Peterson, K., and Jack, T. (2008). The plant B3 superfamily. Trends Plant Sci 13, 647-655.
Tsiatsiani, L., Timmerman, E., De Bock, P.J., Vercammen, D., Stael, S., van de Cotte, B., Staes, A., Goethals, M., Beunens, T., Van Damme, P., Gevaert, K., and Van Breusegem, F. (2013). The Arabidopsis metacaspase9 degradome. The Plant cell 25, 2831-2847.
van Doorn, W.G., and Kamdee, C. (2014). Flower opening and closure: an update. Journal of experimental botany 65, 5749-5757.
Wagstaff, C., Yang, T.J., Stead, A.D., Buchanan-Wollaston, V., and Roberts, J.A. (2009). A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. The Plant journal : for cell and molecular biology 57, 690-705.
Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945-950.
Woltering, E.J., Somhorst, D., and Van Der Veer, P. (1995). The Role of Ethylene in Interorgan Signaling during Flower Senescence. Plant physiology 109, 1219-1225.
Woo, H.R., Kim, J.H., Kim, J., Kim, J., Lee, U., Song, I.J., Kim, J.H., Lee, H.Y., Nam, H.G., and Lim, P.O. (2010). The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of experimental botany 61, 3947-3957.
Xu, A., Zhang, W., and Wen, C.K. (2014). ENHANCING ctr1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC plant biology 14, 48.
Yasumura, Y., Pierik, R., Kelly, S., Sakuta, M., Voesenek, L.A., and Harberd, N.P. (2015). An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling. Plant physiology 169, 283-298.

Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., and Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America 106, 21431-21436.
謝東霖. (2011). 文心蘭中SVP兩個SVP同源基因OnSVP1/2參與調控花器老化即凋落與開花時間之功能性分析.碩士論文
Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., and Yanofsky, M.F. (2000). MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. The Plant journal 24, 457-466.
Bleecker, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant cell 9, 1169-1179.
Chen, M.K., Lee, P.F., and Yang, C.H. (2011a). Delay of flower senescence and abscission in Arabidopsis transformed with an FOREVER YOUNG FLOWER homolog from Oncidium orchid. Plant signaling & behavior 6, 1841-1843.
Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I., and Yang, C.H. (2011b). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant journal : for cell and molecular biology 68, 168-185.
Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. (2000). The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. The Plant cell 12, 183-198.
Fernandez, D.E., Wang, C.T., Zheng, Y., Adamczyk, B.J., Singhal, R., Hall, P.K., and Perry, S.E. (2014). The MADS-Domain Factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, Are Necessary to Block Floral Gene Expression during the Vegetative Phase. Plant physiology 165, 1591-1603.
Fornara, F., Gregis, V., Pelucchi, N., Colombo, L., and Kater, M. (2008). The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. Journal of experimental botany 59, 2181-2190.
Hiratsu, K., Matsui, K., Koyama, T., and Ohme-Takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant journal 34, 733-739.
Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS.
Hwan Lee, J., Sook Chung, K., Kim, S.K., and Ahn, J.H. (2014). Post-translational regulation of short vegetative phase as a major mechanism for thermoregulation of flowering. Plant signaling & behavior 9, e28193.
Jaudal, M., Monash, J., Zhang, L., Wen, J., Mysore, K.S., Macknight, R., and Putterill, J. (2014). Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago. Journal of experimental botany 65, 429-442.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. (J Exp Bot. ).
Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADS-domain proteins: structural modularity protein interactions and network evolution in land plants.
Lee, J.H., Park, S.H., Lee, J.S., and Ahn, J.H. (2007). A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta 1769, 455-461.
Lee, S., Choi, S.C., and An, G. (2008). Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. The Plant journal : for cell and molecular biology 54, 93-105.
Li, Z.M., Zhang, J.Z., Mei, L., Deng, X.X., Hu, C.G., and Yao, J.L. (2010). PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74, 129-142.
Marin-Gonzalez, E., Matias-Hernandez, L., Aguilar-Jaramillo, A.E., Lee, J.H., Ahn, J.H., Suarez-Lopez, P., and Pelaz, S. (2015). SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures. Plant physiology 169, 1214-1224.
Masiero, S., Li, M.A., Will, I., Hartmann, U., Saedler, H., Huijser, P., Schwarz-Sommer, Z., and Sommer, H. (2004). INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131, 5981-5990.
Tao, Z., Shen, L., Liu, C., Liu, L., Yan, Y., and Yu, H. (2012). Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. The Plant journal 70, 549-561.
Theissen, G. (2001). Development of floral organ identity: stories from the MADS house. (Curr Opin Plant Biol).
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43, 484-516.
Trevaskis, B., Tadege, M., Hemming, M.N., Peacock, W.J., Dennis, E.S., and Sheldon, C. (2007). Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant physiology 143, 225-235.
Wingen, L.U., Munster, T., Faigl, W., Deleu, W., Sommer, H., Saedler, H., and Theissen, G. (2012). Molecular genetic basis of pod corn (Tunicate maize). Proceedings of the National Academy of Sciences of the United States of America 109, 7115-7120.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊