跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/26 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏儒
研究生(外文):PO-JU HUANG
論文名稱:模糊派工策略於彈性製造系統資源指派的應用
論文名稱(外文):Fuzzy-Based Resource Dispatching Strategy for FMSs
指導教授:呂明山呂明山引用關係
指導教授(外文):MING-SHAN LU
口試委員:林君維王泰裕
口試委員(外文):Chun-Wei LinTai-Yue Wang
口試日期:2015-07-04
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:彈性製造系統派工策略模糊理論系統模擬
外文關鍵詞:Flexible manufacturing system (FMS)Dispatching strategyFuzzy theorySystem simulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
  為了因應市場的多樣化需求,必須引進更具彈性的製造系統。彈性製造系統具高度彈性,且可適應各種複雜且不斷變動的生產環境,常用派工策略考慮的生產變數有限,導致無法有效滿足複雜的績效指標及即時變動的製造環境。因此,本研究提出以模糊理論為基礎的兩決策模糊派工策略。模糊派工策略分為選擇加工工單及選擇加工機台兩個模糊決策,分別考量不同決策時機影響系統績效的生產變數。依據各生產變數與派工決策的模糊隸屬函數建立模糊規則庫,以判斷加工機台與作業之優先順序,接著,以Arena及Excel.VBA建立模型進行系統模擬,並依據模擬結果評估系統績效表現。最後,將模糊派工策略在不同績效指標下,與其他常用派工策略組合做績效的分析與比較,了解其優勢及效益。結果顯示,模糊派工策略在不同製造環境下,於各績效指標的表現及穩定性皆較常用派工策略組合好,此外,模糊選擇機台(FuzzySM)較模糊選擇工單(FuzzySJ)對系統有更佳的效益。

To meet a variety of market needs, it is important to introduce more flexible manufacturing systems that can adapt to various complex and changing production environments. Common dispatch strategies consider only a limited number of production variables and hence are unable to effectively meet complex performance indicators and manufacturing environments with real-time changes. As such, this study presents a two decision fuzzy dispatch strategy based on the fuzzy theory. Two types of decision strategies, selecting job orders and selecting processing machines, were considered according to production variables that affect system performance at different decision timings. A fuzzy rule base constructed by fuzzy membership functions of production variables and decision strategies determines the priorities of job orders and processing machines. Then, a simulation model was created by using Arena and Excel.VBA and system performances were evaluated from the simulation results. The different performance indicators of the proposed fuzzy dispatch strategy were compared with those of other common dispatch strategies. The results show that the fuzzy dispatch strategy exhibits better performance and stability in all the performance indicators in various manufacturing environments compared to the common dispatch strategies. In addition, the fuzzy dispatch strategy for selecting processing machines (FuzzySM) yield greater benefits than that for selecting job orders (FuzzySJ).
摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1研究背景與動機 1
1.2研究範圍與目的 2
1.3研究流程 3
第二章 文獻探討 4
2.1彈性製造系統概述 4
2.2排程與動態派工的相關文獻 5
2.2.1排程概述及相關文獻 5
2.2.2派工概述及相關文獻 6
2.3模糊理論 9
2.3.1模糊集合 9
2.3.2語言變數 10
2.3.3模糊規則 11
2.3.4模糊控制 12
2.3.5模糊理論應用於動態派工 13
2.4系統模擬概述 15
第三章 研究方法 17
3.1問題描述 17
3.2說明決策時機與生產變數 18
3.2.1決策時機 18
3.2.2選擇工單加工順序 20
3.2.3選擇加工機台順序 21
3.3模糊動態派工策略之建構 22
3.3.1建立模糊規則 24
3.3.2定義模糊化及解模糊化規數函數 26
3.4系統模擬與應用 28
3.5績效指標與常用派工法則 28
3.5.1定義常用績效指標 29
3.5.2定義兩決策時機之常用派工策略 30
第四章 系統模擬與分析 31
4.1建構彈性製造系統 31
4.2模擬系統相關參數設定 31
4.3模擬結果與分析 33
4.3.1不同製造環境下各派工策略績效表現 34
4.3.2派工策略於不同製造環境下各績效表現變動情況 42
4.3.3小結 48
4.3.4選擇機台派工策略及選擇工單派工策略之分析比較 49
第五章 結論與未來發展 52
5.1結論 52
5.2未來發展 52
第六章 參考文獻 54

1.呂明山、孫旻聰,2011,結合派翠網路及基因演算法於彈性製造系統零件途程動態派遣的應用,技術學刊,第二十六卷,第一期,pp. 73-85。
2.孫宗瀛、楊英魁,2005,Fuzzy控制:理論、實作與應用,全華科技圖書股份有限公司。
3.郭幸民,2014,系統模擬與Arena應用,2014,滄海書局。
4.陳建良,1995,排程概述,機械工業雜誌,153期,pp. 122-137。
5.高進鎰、葛自祥,2005,彈性製造系統,高立圖書有限公司。
6.Abou-Ali, M.G. and Shouman, M.A., 2004, “Effect of dynamic and static dispatching strategies on dynamically planned and unplanned FMS”, Journal of Materials Processing Technology, 148, pp. 132–138.
7.Browne, J., Dubois, D., Rathmill, K., Sethi, S.P. and Stecke, K.E., 1984, “Classification of flexible manufacturing systems”, The FMS Maqazine, pp. 114-117.
8.Blackstone, J.H., Phillips, D.T. and Hogg, G.L., 1982, “A state-of-the-art survey of dispatching rules for manufacturing job shop operations”, International Journal of Production Research, Volume 20, Issue 1, pp. 27-45.
9.Birgin, E.G. and Ronconi, D.P., 2011, “Heuristic methods for the single machine scheduling problem with different ready times and a common due date”, Engineering Optimization, Volume 44, Issue 10, pp. 1197-1208.
10.Caprihan, R., Kumar, S., Gursaran and Das, A., 2007, “An object-oriented fuzzy controller for dynamic sequencing of flexible machines”, Journal of Advanced Manufacturing Systems, Volume 06, Issue 01, pp. 39-58.
11.Conway, R.W., Maxwell, W.L. and Miller, L.W., 1967, “Theory of Scheduling”, Courier Corporation.
12.Han, L., Xing, K., Chen, X., Lei, H. and Wang, F., 2014, “Deadlock-free genetic scheduling for flexible manufacturing systems using Petri nets and deadlock controllers”, International Journal of Production Research, Volume 52, Issue 5, pp. 1557-1572.
13.Ichikawa, H. and Humanities, K.U., 2009, “Simulating an applied model to optimize cell production and parts supply (Mizusumashi) for laptop assembly”, Simulation Conference (WSC), pp. 2272-2280.
14.Jerald, J., Asokan, P., Saravanan, R. & Rani, A.D.C., 2006, “Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm”, The International Journal of Advanced Manufacturing Technology, Volume 29, Issue 5-6, pp. 584-589.
15.Jain, A.K., and Elmaraghy, H.A., 1997, “Production scheduling rescheduling in flexible manufacturing”, International Journal of Production Research, Vol.35, No.1, pp. 281-310.
16.Jamaludin, J., Rahim, N.A. and Ping, H.W., 2008, “Self-tuning fuzzy-based dispatching strategy for elevator group control systems”, Control, Automation and Systems, ICCAS 2008. International Conference on, pp. 339-344.
17.Kong, Y., Gong, X. and Wang J., 2006, “Realtime Scheduling for FMS Based on Fuzzy Logic”, Innovative Computing, Information and Control, ICICIC '06. First International Conference on, pp. 195-198.
18.Kazerooni, A ., Abhary, K., Luong, L.H.S., and Chan, F.T.S., 2001, “Application of Fuzzy Set Theory in Flexible Manufacturing System Design”, Computational Intelligence In Manufacturing Handbook, CRC Press 2000, DOI: 10.1201/9781420041934.ch5
19.Lu, M. and Liu, Y., 2011, “Dynamic dispatching for a flexible manufacturing system based on fuzzy logic”, The International Journal of Advanced Manufacturing Technology, Volume 54, Issue 9-12, pp. 1057-1065.
20.Le, V.T., Zhang, J., Johnstone, M., Nahavandi, S. and Creighton, D., 2012, “A generalised data analysis approach for baggage handling systems simulation”, Systems, Man, and Cybernetics (SMC), IEEE International Conference on, pp. 1681-1687.
21.Nanvala, H.B., 2011, “Use of Fuzzy Logic Approaches in Scheduling of FMS: A Review”, International Journal on Computer Science and Engineering, Vol. 3, No. 4, pp. 1734-1739.
22.Ozmutlu, S. and Harmonosky, C.M., 2005, “A real-time methodology for minimizing mean flowtime in FMSs with routing flexibility: Threshold-based alternate routing”, European Journal of Operational Research, Volume. 166, Issue. 2, pp. 369–384.
23.Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., and Scholz-Reiter, B., 2013, “Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems”, International Journal of Production Economics, Volume 145, Issue 1, pp. 67-77.
24.Pour, S.N., Tavakkoli-Moghaddam, R. and Asadi, H., 2013, “Optimizing a multi-objectives flow shop scheduling problem by a novel genetic algorithm”, International Journal of Industrial Engineering Computations 4, pp. 345-354.
25.Qin, W., Zhang, J. and Sun, Y., 2013, “Dynamic dispatching for interbay material handling by using modified Hungarian algorithm and fuzzy-logic-based control”, The International Journal of Advanced Manufacturing Technology, Volume 67, Issue 1-4, pp. 295-309.
26.Restrepo, I.M. and Balakrishnan, S., 2008, “Fuzzy-based methodology for multi-objective scheduling in a robot-centered flexible manufacturing cell”, Journal of Intelligent Manufacturing, Volume 19, Issue 4, pp. 421-432.
27.Rajabinasab, A. and Mansour, S., 2011, “Dynamic flexible job shop scheduling with alternative process plans: an agent-based approach”, The International Journal of Advanced Manufacturing Technology, Volume 54, Issue 9-12, pp. 1091-1107.
28.Sule, D.R., 1997, “Industrial Scheduling”, PWS Publishing Company.
29.Samur, S. and Bulkan, S., 2010, “An Evolutionary Solution to a Multi-objective Scheduling Problem”, Proceedings of the World Congress on Engineering 2010, Vol.3.
30.Singh, A., Sharma, N. and Pragya , 2014, “A Real-time Methodology for Minimizing Flow Time in FMS with Full Routing Flexibility”, International Journal of Advanced Mechanical Engineering, ISSN 2250-3234 Volume 4, Number 2, pp. 185-192.
31.Toba, H., 2000, “Segment-Based Approach for Real-Time Reactive Rescheduling for Automatic Manufacturing Control”, IEEE Transactions On Semiconductor Manufacturing, Vol. 13, No. 3, pp. 264-272.
32.Tsourveloudis, N.C. and Phillis, Y.A., 1998, “Fuzzy Assessment of Machine Flexibility”, IEEE Transactions on Engineering Management, Vol. 45, No. 1, pp. 78-87.
33.Vilcot, G. and Billaut, J., 2008, “A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem”, European Journal of Operational Research, Volume 190, Issue 2, pp. 398–411.
34.Wang, L. and Mendel, J.M., 1992, “Generating Fuzzy Rules by Learning from Examples”, IEEE Transactions On Systems, Man, And Cybernetics, Vol. 22, No. 6, pp. 1414-1427.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top