|
Reference 1. Herbst, R. S.; Heymach, J. V.; Lippman, S. M., Lung cancer. The New England journal of medicine 2008, 359 (13), 1367-80. 2. Ciardiello, F.; Tortora, G., EGFR antagonists in cancer treatment. The New England journal of medicine 2008, 358 (11), 1160-74. 3. Hirsch, F. R.; Varella-Garcia, M.; Bunn, P. A., Jr.; Di Maria, M. V.; Veve, R.; Bremmes, R. M.; Baron, A. E.; Zeng, C.; Franklin, W. A., Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2003, 21 (20), 3798-807. 4. Muhsin, M.; Graham, J.; Kirkpatrick, P., Gefitinib. Nature reviews. Drug discovery 2003, 2 (7), 515-6. 5. (a) Lynch, T. J.; Bell, D. W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R. A.; Brannigan, B. W.; Harris, P. L.; Haserlat, S. M.; Supko, J. G.; Haluska, F. G.; Louis, D. N.; Christiani, D. C.; Settleman, J.; Haber, D. A., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England journal of medicine 2004, 350 (21), 2129-39; (b) Paez, J. G.; Janne, P. A.; Lee, J. C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F. J.; Lindeman, N.; Boggon, T. J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M. J.; Sellers, W. R.; Johnson, B. E.; Meyerson, M., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304 (5676), 1497-500; (c) Sasaki, H.; Endo, K.; Takada, M.; Kawahara, M.; Kitahara, N.; Tanaka, H.; Okumura, M.; Matsumura, A.; Iuchi, K.; Kawaguchi, T.; Yukiue, H.; Kobayashi, Y.; Yano, M.; Fujii, Y., L858R EGFR mutation status correlated with clinico-pathological features of Japanese lung cancer. Lung Cancer 2006, 54 (1), 103-8. 6. Wermuth, G.; Ganellin, C. R.; Lindberg, P.; Mitscher, L. A., Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem 1998, 70 (5), 1129-1143. 7. Wolber, G.; Langer, T., LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of chemical information and modeling 2005, 45 (1), 160-9. 8. Chiang, Y. K.; Kuo, C. C.; Wu, Y. S.; Chen, C. T.; Coumar, M. S.; Wu, J. S.; Hsieh, H. P.; Chang, C. Y.; Jseng, H. Y.; Wu, M. H.; Leou, J. S.; Song, J. S.; Chang, J. Y.; Lyu, P. C.; Chao, Y. S.; Wu, S. Y., Generation of Ligand-Based Pharmacophore Model and Virtual Screening for Identification of Novel Tubulin Inhibitors with Potent Anticancer Activity. J Med Chem 2009, 52 (14), 4221-4233. 9. Dong, X. L.; Ebalunode, J. O.; Yang, S. Y.; Zheng, W. F., Receptor-Based Pharmacophore and Pharmacophore Key Descriptors forVirtual Screening and QSAR Modeling. Curr Comput-Aid Drug 2011, 7 (3), 181-189. 10. Datta, S.; Grant, D. J., Crystal structures of drugs: advances in determination, prediction and engineering. Nature reviews. Drug discovery 2004, 3 (1), 42-57. 11. (a) Dixon, S. L.; Smondyrev, A. M.; Knoll, E. H.; Rao, S. N.; Shaw, D. E.; Friesner, R. A., PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aid Mol Des 2006, 20 (10-11), 647-671; (b) Dixon, S. L.; Smondyrev, A. M.; Rao, S. N., PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 2006, 67 (5), 370-372. 12. Chen, I. J.; Foloppe, N., Conformational sampling of druglike molecules with MOE and catalyst: Implications for pharmacophore modeling and virtual screening. Journal of chemical information and modeling 2008, 48 (9), 1773-1791. 13. Guner, O.; Clement, O.; Kurogi, Y., Pharmacophore modeling and three dimensional database searching for drug design using catalyst: Recent advances. Curr Med Chem 2004, 11 (22), 2991-3005. 14. (a) Wolber, G.; Langer, T., LigandScout: Interactive automated pharmacophore model generation from ligand-target complexes. Abstr Pap Am Chem S 2005, 229, U611-U611; (b) Wolber, G.; Langer, T., LigandScout: 3-d pharmacophores derived from protein-bound Ligands and their use as virtual screening filters. Journal of chemical information and modeling 2005, 45 (1), 160-169. 15. Wolber, G.; Seidel, T.; Bendix, F.; Langer, T., Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 2008, 13 (1-2), 23-29. 16. Ewing, T. J.; Makino, S.; Skillman, A. G.; Kuntz, I. D., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 2001, 15 (5), 411-28. 17. Subramanian, G.; Paterlini, M. G.; Larson, D. L.; Portoghese, P. S.; Ferguson, D. M., Conformational analysis and automated receptor docking of selective arylacetamide-based kappa-opioid agonists. J Med Chem 1998, 41 (24), 4777-89. 18. McMartin, C.; Bohacek, R. S., QXP: Powerful, rapid computer algorithms for structure-based drug design. J Comput Aid Mol Des 1997, 11 (4), 333-344. 19. Abagyan, R.; Totrov, M.; Kuznetsov, D., Icm - a New Method for Protein Modeling and Design - Applications to Docking and Structure Prediction from the Distorted Native Conformation. J Comput Chem 1994, 15 (5), 488-506. 20. Claussen, H.; Buning, C.; Rarey, M.; Lengauer, T., FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 2001,308 (2), 377-95. 21. McGann, M., FRED pose prediction and virtual screening accuracy. Journal of chemical information and modeling 2011, 51 (3), 578-96. 22. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997, 267 (3), 727-48. 23. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S., Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004, 47 (7), 1739-49. 24. Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M., LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 2003, 21 (4), 289-307. 25. Lyne, P. D., Structure-based virtual screening: an overview. Drug Discov Today 2002, 7 (20), 1047-1055. 26. (a) Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257 (5073), 1078-82; (b) Lyne, P. D., Structure-based virtual screening: an overview. Drug Discov Today 2002, 7 (20), 1047-55. 27. (a) Schevitz, R. W.; Bach, N. J.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Dillard, R. D.; Draheim, S. E.; Hartley, L. W.; Jones, N. D.; Mihelich, E. D.; et al., Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2. Nature structural biology 1995, 2 (6), 458-65; (b) Shoichet, B. K.; Stroud, R. M.; Santi, D. V.; Kuntz, I. D.; Perry, K. M., Structure-Based Discovery of Inhibitors of Thymidylate Synthase. Science 1993, 259 (5100), 1445-1450; (c) Schevitz, R. W.; Bach, N. J.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Dillard, R. D.; Draheim, S. E.; Hartley, L. W.; Jones, N. D.; Mihelich, E. D.; Olkowski, J. L.; Snyder, D. W.; Sommers, C.; Wery, J. P., Structure-Based Design of the First Potent and Selective Inhibitor of Human Nonpancreatic Secretory Phospholipase-a(2). Nature structural biology 1995, 2 (6), 458-465. 28. Wang, J.; Kang, X.; Kuntz, I. D.; Kollman, P. A., Hierarchical database screenings for HIV-1 reverse transcriptase using a pharmacophore model, rigid docking, solvation docking, and MM-PB/SA. J Med Chem 2005, 48 (7), 2432-44. 29. (a) Osterberg, F.; Morris, G. M.; Sanner, M. F.; Olson, A. J.; Goodsell, D. S., Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins-Structure Function and Genetics 2002, 46 (1), 34-40; (b) Park, H.; Lee, J.; Lee, S., Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins 2006, 65 (3), 549-554; (c) Morris, G. M.; Huey, R.;Lindstrom, W.; Li, C. L.; Zhao, Y.; Hart, W. E.; Belew, R.; Sanner, M. F.; Goodsell, D. S.; Olson, W. J., Recent advances in autodock: Search, representation and scoring. Abstr Pap Am Chem S 2004, 228, U508-U508. 30. Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S., A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007, 28 (6), 1145-1152. 31. Gasteiger, J.; Marsili, M., Iterative Partial Equalization of Orbital Electronegativity - a Rapid Access to Atomic Charges. Tetrahedron 1980, 36 (22), 3219-3228. 32. Wang, J. C.; Lin, J. H.; Chen, C. M.; Perryman, A. L.; Olson, A. J., Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. Journal of chemical information and modeling 2011, 51 (10), 2528-2537. 33. Roche, O.; Kiyama, R.; Brooks, C. L., 3rd, Ligand-protein database: linking protein-ligand complex structures to binding data. J Med Chem 2001, 44 (22), 3592-8. 34. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P., A New Force-Field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins. Journal of the American Chemical Society 1984, 106 (3), 765-784. 35. (a) Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V., Virtual computational chemistry laboratory--design and description. J Comput Aided Mol Des 2005, 19 (6), 453-63; (b) Tetko, I. V., Computing chemistry on the web. Drug Discov Today 2005, 10 (22), 1497-500; (c) Tetko, I. V.; Tanchuk, V. Y., Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci 2002, 42 (5), 1136-45; (d) Tetko, I. V.; Tanchuk, V. Y.; Villa, A. E. P., Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. J Chem Inf Comp Sci 2001, 41 (5), 1407-1421. 36. AQUASOL database http://www.pharmacy.arizona.edu/outreach/aquasol/index.html. 37. PHYSPROP database. http://www.srcinc.com/what--‐we--‐do/product.aspx?id=133. 38. (a) Abad-Zapatero, C.; Metz, J. T., Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today 2005, 10 (7), 464-469; (b) Hopkins, A. L.; Groom, C. R.; Alex, A., Ligand efficiency: a useful metric for lead selection. Drug Discov Today 2004, 9 (10), 430-431. 39. Garcia-Sosa, A. T.; Hetenyi, C.; Maran, U., Drug Efficiency Indices for Improvement of Molecular Docking Scoring Functions. J Comput Chem 2010, 31 (1), 174-184. 40. Lakowicz.J.R., Principes of Flurescence Spectroscopy. 1999.41. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The Protein Data Bank. Nucleic Acids Res 2000, 28 (1), 235-42. 42. Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C., Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of biological chemistry 2002, 277 (48), 46265-72. 43. Wood, E. R.; Truesdale, A. T.; McDonald, O. B.; Yuan, D.; Hassell, A.; Dickerson, S. H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K. J.; Rusnak, D. W.; Gilmer, T. M.; Shewchuk, L., A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer research 2004, 64 (18), 6652-9. 44. Zhang, X.; Gureasko, J.; Shen, K.; Cole, P. A.; Kuriyan, J., An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006, 125 (6), 1137-49. 45. Blair, J. A.; Rauh, D.; Kung, C.; Yun, C. H.; Fan, Q. W.; Rode, H.; Zhang, C.; Eck, M. J.; Weiss, W. A.; Shokat, K. M., Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat Chem Biol 2007, 3 (4), 229-238. 46. Yun, C. H.; Boggon, T. J.; Li, Y. Q.; Woo, M. S.; Greulich, H.; Meyerson, M.; Eck, M. J., Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer cell 2007, 11 (3), 217-227. 47. Yun, C. H.; Mengwasser, K. E.; Toms, A. V.; Woo, M. S.; Greulich, H.; Wong, K. K.; Meyerson, M.; Eck, M. J., The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (6), 2070-2075. 48. Zhou, W. J.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D. N.; Capelletti, M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong, K. K.; Eck, M. J.; Gray, N. S.; Janne, P. A., Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462 (7276), 1070-1074. 49. Brewer, M. R.; Choi, S. H.; Alvarado, D.; Moravcevic, K.; Pozzi, A.; Lemmon, M. A.; Carpenter, G., The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain. Mol Cell 2009, 34 (6), 641-651. 50. Jura, N.; Endres, N. F.; Engel, K.; Deindl, S.; Das, R.; Lamers, M. H.; Wemmer, D. E.; Zhang, X. W.; Kuriyan, J., Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment. Cell 2009, 137 (7), 1293-1307. 51. Klein, D. E.; Stayrook, S. E.; Shi, F. M.; Narayan, K.; Lemmon, M. A., Structural basis for EGFR ligand sequestration by Argos. Nature 2008, 453 (7199), 1271-U79.52. Mineev, K. S.; Bocharov, E. V.; Pustovalova, Y. E.; Bocharova, O. V.; Chupin, V. V.; Arseniev, A. S., Spatial Structure of the Transmembrane Domain Heterodimer of ErbB1 and ErbB2 Receptor Tyrosine Kinases. J Mol Biol 2010, 400 (2), 231-243. 53. Alvarado, D.; Klein, D. E.; Lemmon, M. A., Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor. Cell 2010, 142 (4), 568-579. 54. Yoshikawa, S.; Kukimoto-Niino, M.; Parker, L.; Handa, N.; Terada, T.; Fujimoto, T.; Terazawa, Y.; Wakiyama, M.; Sato, M.; Sano, S.; Kobayashi, T.; Tanaka, T.; Chen, L.; Liu, Z. J.; Wang, B. C.; Shirouzu, M.; Kawa, S.; Semba, K.; Yamamoto, T.; Yokoyama, S., Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 2012. 55. LigandScout 3.0. http://www.inteligand.com/ligandscout/. 56. Catalyst. Accelrys, Accelrys Inc. http://www.accelrys.com. 57. DiscoveryStudio 2.5, Accelrys, Accelrys Inc. http://accelrys.com/events/webinars/discovery--‐studio--‐25/index.html. 58. Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G., ZINC: A Free Tool to Discover Chemistry for Biology. Journal of chemical information and modeling 2012. 59. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews 2001, 46 (1-3), 3-26. 60. Li, J.; Ehlers, T.; Sutter, J.; Varma-O''brien, S.; Kirchmair, J., CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration. Journal of chemical information and modeling 2007, 47 (5), 1923-32. 61. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem 2009, 30 (16), 2785-2791. 62. O''Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R., Open Babel: An open chemical toolbox. J Cheminform 2011, 3, 33. 63. Gaussian 03, R. C., Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A, Gaussian03. 2004. 64. (a) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges - the Resp Model. J Phys Chem-Us 1993, 97 (40), 10269-10280; (b) Zhang, W.; Hou, T. J.; Qiao, X. B.; Xu, X. J., Parameters for the generalized born model consistent with RESP atomic partial charge assignment protocol. J Phys Chem B 2003, 107 (34), 9071-9078. 65. David A. Case, T. A. D., T. E. Cheatham, Carlos L. Simmerling, J. Wang, Robert E. Duke, Ray Luo, Michael Crowley, Ross C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, Adrian Roitberg, Gustavo Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, Scott R. Brozell, Tom Steinbrecher, Holger Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, Peter A. Kollman, AMBER11. Amber 11. University of California, San Francisco. 66. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and testing of a general amber force field. J Comput Chem 2004, 25 (9), 1157-74. 67. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65 (3), 712-25. 68. (a) Lucasius, C. B.; Kateman, G., Understanding and Using Genetic Algorithms .1. Concepts, Properties and Context. Chemometr Intell Lab 1993, 19 (1), 1-33; (b) Lucasius, C. B.; Kateman, G., Understanding and Using Genetic Algorithms .2. Representation, Configuration and Hybridization. Chemometr Intell Lab 1994, 25 (2), 99-145. 69. Xiang, Z.; Soto, C. S.; Honig, B., Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (11), 7432-7. 70. (a) Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A., PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 2004, 32, W665-W667; (b) Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A., PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 2007,35, W522-W525. 71. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 1983, 79 (2), 926-935. 72. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C., Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys 1977, 23 (3), 327-341. 73. (a) Darden, T.; York, D.; Pedersen, L., Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. J Chem Phys 1993, 98 (12), 10089-10092; (b) Petersen, H. G., Accuracy and Efficiency of the Particle Mesh Ewald Method. J Chem Phys 1995, 103 (9), 3668-3679; (c) Cheatham, T. E.; Miller, J. L.; Fox, T.; Darden, T. A.; Kollman, P. A., Molecular-Dynamics Simulations on Solvated Biomolecular Systems - the Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, Rna, and Proteins. Journal of the American Chemical Society 1995, 117 (14), 4193-4194. 74. Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.; Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P., A quantitative analysis of kinase inhibitor selectivity. Nature biotechnology 2008, 26 (1), 127-32. 75. Wheeler, D. L.; Dunn, E. F.; Harari, P. M., Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nature reviews. Clinical oncology 2010, 7 (9), 493-507.
|