|
Reference [1] N. Weste and D. Harris, “ Datapath subsystems, ” in CMOS VLSI Design: A Circuits and Systems Perspective, 3rd ed. Pearson Education, 2005, ch. 10, pp. 667. [2] P.R. Cappello and K. Steiglitz, “ Some complexity issues in digital signal processing, ” IEEE Trans. Acoust. Speech, Signal Process, vol. ASSP-32, no. 5, pp. 1037–1041 , Oct., 1984. [3] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Minimum number of operations under a general number representation for digital filter synthesis,” in Proc. IEEE Eur. Conf. Circuit Theory Des., Aug., 2007, pp. 252–255. [4] L. Aksoy, E. Gunes, and P. Flores, “Search algorithms for the multiple constant multiplications problem: exact and approximate, ” Elsevier J. Microprocess. Microsyst, vol. 34, no. 5, pp. 151–162, Aug., 2010. [5] L. Aksoy, E. Gunes, and P. Flores, “An exact breadth-first search algorithm for the multiple constant multiplications problem, ” in Proc. IEEE Norchip Conference, Nov., 2008, pp. 41–46. [6] O. Gustafsson and L.Wanhammar, “ILP modelling of the common subexpression sharing problem,” in Proc. Int. Conf. Electron., Circuits Syst., Sept., 2002, pp. 1171–1174. [7] R. Hartley, “Subexpression Sharing in Filters using Canonic Signed Digit Multipliers,” IEEE Trans. Circ. Syst, vol. 43, no. 10, pp. 677–688, Oct., 1996. [8] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, “A new algorithm for elimination of common subexpressions,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 1, pp. 58–68, Jan., 1999. [9] Y.H. Ho, C.U. Lei, H.-K. Kwan, and N. Wong, “Global optimization of common subexpressions for multiplierless synthesis of multiple constant multiplications, ” in Proc. IEEE Design Automation Conf., Asia and South Pacific, Jan., 2008, pp. 119–124. [10] I.C. Park and H.J. Kang, “Digital filter synthesis based on minimal signed digit representation,” in Proc. Des. Autom. Conf., Aug., 2001, pp. 468–473.4. [11] A. Dempster and M. Macleod, “Use of Minimum-Adder Multiplier Blocks in FIR Digital Filters, ” IEEE Trans. Circ. Syst, vol.42, no. 9, pp. 569– 577, Sept., 1995. [12] Y. Voronenko and M. Pschel, “Multiplierless multiple constant multiplication,” ACM Trans. Algorithms, vol. 3, no. 2, pp. 1–38, May., 2007. [13] M. Kumm, M. Faust, P. Zipf, and C.H. Chang, “ Pipelined Adder Graph Optimization for High Speed Multiple Constant Multiplication, ” in Proc. IEEE Int. Symp. Circuits Syst, May, 2012, pp. 49–52. [14] L. Aksoy, C. Lazzari, E. Costa, P. Flores, and J. Monteiro, “Design of Digit-Serial FIR Filters: Algorithms, Architectures, and a CAD Tool, ” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, pp.498–511, Mar., 2013. [15] T. Noll, “Carry-Save Arithmetic for High-speed Digital Signal Processing,” in Proc. IEEE Int. Symp. Circuits Syst’90, May., 1990, vol. 2, pp. 982-986. [16] V. A. Bartlett and A. G. Dempster, “Using carry-save adders in low-power multiplier blocks,” in Proc. IEEE Int. Symp. Circuits Syst., May, 2001, pp. 222–225. [17] O. Gustafsson, H. Ohlsson, and L. Wanhammar, “Minimum-adder integer multipliers using carry-save adders,” in Proc. IEEE Int. Symp. Circuits Syst., May, 2001, pp. 709–712. [18] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing High Speed Arithmetic Circuits using Three-Term Extraction,” in Proc. Design, Automation and Test in Europe , Mar., 2006, pp. 1294–1299. [19] A. Hosangadi, F. Fallah, and R. Kastner, “Multiplier Blocks using Carry-Save Adders,” in Proc. IEEE Int. Symp. Circuits Syst., May., 2004, pp.473-476. [20] O. Gustafsson and L. Wanhammar, “Low-complexity constant multiplication using carry-save arithmetic for high-speed digital filters,” in Proc. Image and Signal Processing and Analysis, Sept., 2007, pp. 212–217. [21] L. Aksoy and E. Gunes, “Area Optimization Algorithms in High-Speed Digital FIR Filter Synthesis,” in Proc. 21st Annu. Symp. on Integr. Circuits Syst. Des., Sept., 2008, pp. 64–69. [22] ALGOS. Group, INSEC-ID. (Jan. 28, 2013). Filter Benchmarks [Online]. Available: http://algos.inesc-id.pt/multicon/index.php?Downloads:Filter_Benchmarks#BenchmarksBySpec [23] C.H. Chang and M. Faust (Oct. 03, 2011). FIR Filter data found in the literature [Online]. Available: http://www.firsuite.net/FIR/FromPublication [24] K. Johansson, "Low power and low complexity shift-and-add based computations," Ph.D. dissertation, Department of Electrical Engineering, Linköping University, Linköping, Sweden, 2008. [25] M. Aktan, A. Yurdakul, and G. Dündar, “An algorithm for the design of low-power hardware-efficient fir filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1536–1545, Jul., 2008. [26] A. P. Vinod, E. M. K. Lai, A. B. Premkuntar, and C. T. Lau, “FIR filter implementation by efficient sharing of horizontal and vertical common subexpressions, ” Electron. Lett., vol. 39, no. 2, pp. 251–253, Jan., 2003. [27] T. Yoshino, R. Jain, P. T. Yang, H. Davis, W. Gass, and A. H. Shah, “A 100-MHz 64-Tap FIR Digital Filter in 0.8-pm BiCMOS Gate Array, ” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1494–1501, Dec., 1990. [28] Y. C. Lim and S. Parker, “Discrete coefficient FIR digital filter design based upon an LMS criteria, ” IEEE Trans. Circuits Syst., vol. 30, no. 10, pp. 723–739, Oct., 1983.
|