跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧以昕
研究生(外文):I-Hsin Lu
論文名稱:運用等效尾態及場效載子遷移率模型來分析有機發光二極體中的載子傳輸
論文名稱(外文):Modeling of carrier transport in organic light emitting diode by considering tail states and field dependent mobility model
指導教授:吳育任
口試委員:邱天隆梁文傑林晃巖
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:95
中文關鍵詞:有機發光二極體尾態載子遷移率激子擴散
外文關鍵詞:organic light-emitting diodetail statesfield dependent mobility modelexciton diffusionexciton quenching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於有機發光二極體的各項優點,有機發光二極體有潛力成為下一代的照明選擇,對於有機發光二極體的發展及市場需由,人們需要研究更好的OLED發光效率,因此材料的研究變得十分的重要,對此,需要一套有效率且準確的有機元件模擬程式。
對於元件電性的建模,我們使用了一維Poisson與Drift-diffusion方程,並且考慮了有機材料中的等效尾態來模擬有機元件的電性,另外,我們同時也考慮了等效的場效載子遷移率模型,來描述載子在元件中的傳輸行為。藉由對照實驗及模擬結果,我們建立了一套等效的模擬方法。其中有許多值得討論的問題,例如,金屬及有機材料之間接面的問題,對此,我們使用了一些模擬上的方法來表現,並且討論接面對電性的影響。在載子遷移率模擬上,我們也發現了一些現象,例如載子的速度飽和等行為,對此,我們必須對場效載子遷移率模型做出修正來解決模擬的問題。另外,對於發光層的主-客材料混合問題,我們也提出了一套模擬方法,對於不同比例濃度的混合建立模型,以等效的方法來模擬電性,並且展示了一系列參數對電性趨勢的變化。對於發光區的討論,我們考慮了激子擴散方程,同時考慮了一些激子損失機制例如激子-激子殲滅,用來模擬元件中的發光效率,利用此套方法來建立一個有機發光二極體的電性模擬軟體。

Due to the advantages of the organic light-emitting diode(OLED), the OLED has the potential to become the candidate of the next generation display technology. Since the growing market of OLEDs, people need to improve the power efficiency of OLEDs. The study of materials properties becomes very important. As a result, we need to develop simulation program to numerically analyze the electrical properties of the organic devices.

To build a model for analyzing electrical properties, we used the 1D Poisson and drift-diffusion solver and made a suitable modification to the code. By considering tail states of organic materials, we analyze the electrical property of the organic materials. In addition, we also consider the field dependent mobility model to present the transport behavior of the carriers. By comparing the experiment and simulation results, we can build an effective model to analyze the experimental results. In this thesis, several issues will be analyzed. First, the contact issue between the metal and the organic layer need to be well considered. Second, for the mobility model, we found that velocity saturation model needs to be added to the field dependent model to limit the carrier velocity goes infinity. Finally, the host-guest system also has been analyzed. We build a simulation method to present this system with different doping concentrations. To analyze the emitting distribution in the active layer, we consider the exciton diffusion and exciton quenching mechanisms, such as the exciton-exciton annihilation. With this model, we can model the efficiency of the organic devices. In this thesis, we will demonstrate our approaches in modeling OLED devices.



口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction to OLED device . . . . . . . . . . . . . . 1
1.2 Density of States (DOS) . . . . . . . . . . . . . . . . . 4
1.3 Mobility Model . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Poole-Frenkel Mobility . . . . . . . . . . . . . . 7
1.4 Contact Issues . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.1 Exciton-exciton Annihilation . . . . . . . . . . . 11
2 SimulationMethod . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Simulation Chart . . . . . . . . . . . . . . . . . . . . . 15
2.2 Drift-Diffusion Charge Control Model . . . . . . . . . . 16
2.3 Simulation Structure . . . . . . . . . . . . . . . . . . . 20
2.3.1 Electron Transporting Layer . . . . . . . . . . . 21
2.3.2 Hole Transporting Layer . . . . . . . . . . . . . 22
2.3.3 Contact Resistance . . . . . . . . . . . . . . . . 23
2.3.4 Emitting Layer . . . . . . . . . . . . . . . . . . 25
2.4 Device Efficiency Calculation . . . . . . . . . . . . . . 28
2.4.1 Exciton Diffusion . . . . . . . . . . . . . . . . . 28
3 ResultandDiscussionofSimulationandExperiment . . . . 31
3.1 The Simulation Result of Electron-Only Devices . . . . 31
3.1.1 TAZ . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 The Simulation Result of Hole-Only Devices . . . . . . 37
3.2.1 NPB . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 TAPC . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 The Simulation Result of Multi-Layer OLED . . . . . 55
3.3.1 The Multi-Layer OLED with Pure mCP . . . . 56
3.3.2 The Multi-Layer OLED with 100% Firpic . . . 62
3.3.3 The Multi-Layer OLED with 30% Firpic and
70% mCP . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 The Multi-Layer OLED with 40% Firpic and
60% mCP . . . . . . . . . . . . . . . . . . . . . 71
3.3.5 The Multi-Layer OLED with 5% Firpic and 95%
mCP . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Efficiency of OLED . . . . . . . . . . . . . . . . . . . 76
3.4.1 The Multi-Layer OLED with 30% Firpic and
70% mCP . . . . . . . . . . . . . . . . . . . . . 76
3.4.2 The Multi-Layer OLED with 40% Firpic and
60% mCP . . . . . . . . . . . . . . . . . . . . . 80
3.4.3 The Multi-Layer OLED with 5% Firpic and 95%
mCP . . . . . . . . . . . . . . . . . . . . . . . . 83
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88


[1] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai,
“1,2,4-triazole derivative as an electron transport layer in organic
electroluminescent devices,” Japanese Journal of Applied Physics,
vol. 32, no. 7A, p. L917, 1993.
[2] S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent
devices with improved stability,” Applied Physics
Letters, vol. 69, no. 15, pp. 2160–2162, 1996.
[3] J. S. Swensen, E. Polikarpov, A. Von Ruden, L. Wang, L. S.
Sapochak, and A. B. Padmaperuma, “Improved efficiency in blue
phosphorescent organic light-emitting devices using host materials
of lower triplet energy than the phosphorescent blue emitter,”
Advanced Functional Materials, vol. 21, no. 17, pp. 3250–3258,
2011.
[4] H. Bassler, “Charge transport in disordered organic photoconductors
a monte carlo simulation study,” physica status solidi (b),
vol. 175, no. 1, pp. 15–56, 1993.
[5] W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, “Unified
description of charge-carrier mobilities in disordered semiconducting
polymers,” Phys. Rev. Lett., vol. 94, p. 206601, May 2005.
[6] C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw,
“Unification of the hole transport in polymeric field-effect transistors
and light-emitting diodes,” Phys. Rev. Lett., vol. 91,
p. 216601, Nov 2003.
[7] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey,
and J.-L. Brdas, “Charge transport in organic semiconductors,”
Chemical Reviews, vol. 107, no. 4, pp. 926–952, 2007.
PMID: 17378615.
[8] Y. Olivier, V. Lemaur, J. L. Brdas, and J. Cornil, “Charge hopping
in organic semiconductors: influence of molecular parameters
on macroscopic mobilities in model one-dimensional stacks,” The
Journal of Physical Chemistry A, vol. 110, no. 19, pp. 6356–6364,
2006. PMID: 16686472.
[9] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith,
“Device model investigation of single layer organic light emitting diodes,” Journal of Applied Physics, vol. 84, no. 2, pp. 833–842,
1998.
[10] B. Limketkai, Charge Carrier Transport in Amorphous Organic
Semiconductors. Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, 2003.
[11] L. Pautmeier, R. Richert, and H. Bssler, “Poole-Frenkel behavior
of charge transport in organic solids with off-diagonal disorder
studied by Monte Carlo simulation,” Synthetic Metals ”, vol. 37,
no. 1–3, pp. 271 – 281, 1990. Proceedings of the 21st Europhysics
Conference on Macromolecular Physics ’Electrical and Optical
Active Polymers” Structure, Morphology and Properties.
[12] J. C. Scott, “Metal–organic interface and charge injection in
organic electronic devices,” Journal of Vacuum Science & Technology
A, vol. 21, no. 3, pp. 521–531, 2003.
[13] E. Engel, K. Leo, and M. Hoffmann, “Ultrafast relaxation and
exciton–exciton annihilation in PTCDA thin films at high excitation
densities,” Chemical Physics, vol. 325, no. 1, pp. 170 – 177,
2006. Electronic Processes in Organic Solids.
[14] S. M. Menke and R. J. Holmes, “Exciton diffusion in organic
photovoltaic cells,” Energy Environ. Sci., vol. 7, pp. 499–512,
2014.
[15] N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao,
“Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev.
B, vol. 89, p. 125427, Mar 2014.
[16] D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brzin,
A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton–
exciton annihilation in monolayer molybdenum disulfide,”
Nano Letters, vol. 14, no. 10, pp. 5625–5629, 2014.
[17] H. Gao, H. Rao, Y. Hu, J. Ju, Y. He, and Y. Wan, “Numerical
simulation of multilayer organic light-emitting devices,” Proc.
SPIE, vol. 7658, pp. 76580C–76580C–7, 2010.
[18] Y. Divayana and X. W. Sun, “Observation of excitonic quenching
by long-range dipole-dipole interaction in sequentially doped
organic phosphorescent host-guest system,” Phys. Rev. Lett.,
vol. 99, p. 143003, Oct 2007.
[19] S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in
organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B, vol. 75, p. 125328, Mar 2007.
[20] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and
J. C. Scott, “Transient and steady-state behavior of space charges
in multilayer organic light-emitting diodes,” Journal of Applied
Physics, vol. 89, no. 8, pp. 4575–4586, 2001.
[21] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest,
J. A. Cronin, and M. E. Thompson, “Relationship between
electroluminescence and current transport in organic heterojunction
lightemitting devices,” Journal of Applied Physics, vol. 79,
no. 10, pp. 7991–8006, 1996.
[22] I. H. Campbell and D. L. Smith, “Schottky energy barriers and
charge injection in metal/Alq/metal structures,” Applied Physics
Letters, vol. 74, no. 4, pp. 561–563, 1999.
[23] F.-M. Hsu, C.-H. Chien, C.-F. Shu, C.-H. Lai, C.-C. Hsieh, K.-
W. Wang, and P.-T. Chou, “A bipolar host material containing
triphenylamine and diphenylphosphoryl-substituted fluorene
units for highly efficient blue electrophosphorescence,” Advanced
Functional Materials, vol. 19, no. 17, pp. 2834–2843, 2009.
[24] H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C.Wang, and
K.-T. Wong, “1,3,5-triazine derivatives as new electron transporttype
host materials for highly efficient green phosphorescent
oleds,” J. Mater. Chem., vol. 19, pp. 8112–8118, 2009.
[25] Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials
science of DNA,” J. Mater. Chem., vol. 19, pp. 1353–1380, 2009.
[26] K. Tsung and S. So, “High temperature carrier mobility as an
intrinsic transport parameter of an organic semiconductor,” Organic
Electronics, vol. 10, no. 4, pp. 661 – 665, 2009.
[27] W. Brtting, S. Berleb, and A. G. Mckl, “Device physics of organic
light-emitting diodes based on molecular materials,” Organic
Electronics, vol. 2, no. 1, pp. 1 – 36, 2001.
[28] K. Meisel, W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn,
P. Bobbert, P. Blom, D. de Leeuw, and M. Michels, “Chargecarrier
mobilities in disordered semiconducting polymers: effects
of carrier density and electric field,” physica status solidi (c),
vol. 3, no. 2, pp. 267–270, 2006.
[29] P. K.Watkins, A. B.Walker, and G. L. B. Verschoor, “Dynamical
Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology,” Nano Letters, vol. 5,
no. 9, pp. 1814–1818, 2005.
[30] M. C. J. M. Vissenberg and M. Matters, “Theory of the fieldeffect
mobility in amorphous organic transistors,” Phys. Rev. B,
vol. 57, pp. 12964–12967, May 1998.
[31] O. V. Mikhnenko, P. W. M. Blom, and T.-Q. Nguyen, “Exciton
diffusion in organic semiconductors,” Energy Environ. Sci., vol. 8,
pp. 1867–1888, 2015.
[32] E. B. Namdas, A. Ruseckas, I. D. W. Samuel, S.-C.
Lo, and P. L. Burn, “Triplet exciton diffusion in factris(
2-phenylpyridine) Iridium(iii)-cored electroluminescent dendrimers,”
Applied Physics Letters, vol. 86, no. 9, pp. –, 2005.
[33] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent
emission from organic electroluminescent devices,” Nature,
vol. 395, pp. 151–154, 09 1998.
[34] A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda,
“Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,”
Organic Electronics, vol. 6, no. 1, pp. 3 – 9, 2005.
[35] C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output
coupling efficiency of organic light-emitting diodes by backside
substrate modification,” Applied Physics Letters, vol. 76,
no. 13, pp. 1650–1652, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊