|
[1] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, “1,2,4-triazole derivative as an electron transport layer in organic electroluminescent devices,” Japanese Journal of Applied Physics, vol. 32, no. 7A, p. L917, 1993. [2] S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Applied Physics Letters, vol. 69, no. 15, pp. 2160–2162, 1996. [3] J. S. Swensen, E. Polikarpov, A. Von Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved efficiency in blue phosphorescent organic light-emitting devices using host materials of lower triplet energy than the phosphorescent blue emitter,” Advanced Functional Materials, vol. 21, no. 17, pp. 3250–3258, 2011. [4] H. Bassler, “Charge transport in disordered organic photoconductors a monte carlo simulation study,” physica status solidi (b), vol. 175, no. 1, pp. 15–56, 1993. [5] W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, “Unified description of charge-carrier mobilities in disordered semiconducting polymers,” Phys. Rev. Lett., vol. 94, p. 206601, May 2005. [6] C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Phys. Rev. Lett., vol. 91, p. 216601, Nov 2003. [7] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brdas, “Charge transport in organic semiconductors,” Chemical Reviews, vol. 107, no. 4, pp. 926–952, 2007. PMID: 17378615. [8] Y. Olivier, V. Lemaur, J. L. Brdas, and J. Cornil, “Charge hopping in organic semiconductors: influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks,” The Journal of Physical Chemistry A, vol. 110, no. 19, pp. 6356–6364, 2006. PMID: 16686472. [9] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model investigation of single layer organic light emitting diodes,” Journal of Applied Physics, vol. 84, no. 2, pp. 833–842, 1998. [10] B. Limketkai, Charge Carrier Transport in Amorphous Organic Semiconductors. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2003. [11] L. Pautmeier, R. Richert, and H. Bssler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synthetic Metals ”, vol. 37, no. 1–3, pp. 271 – 281, 1990. Proceedings of the 21st Europhysics Conference on Macromolecular Physics ’Electrical and Optical Active Polymers” Structure, Morphology and Properties. [12] J. C. Scott, “Metal–organic interface and charge injection in organic electronic devices,” Journal of Vacuum Science & Technology A, vol. 21, no. 3, pp. 521–531, 2003. [13] E. Engel, K. Leo, and M. Hoffmann, “Ultrafast relaxation and exciton–exciton annihilation in PTCDA thin films at high excitation densities,” Chemical Physics, vol. 325, no. 1, pp. 170 – 177, 2006. Electronic Processes in Organic Solids. [14] S. M. Menke and R. J. Holmes, “Exciton diffusion in organic photovoltaic cells,” Energy Environ. Sci., vol. 7, pp. 499–512, 2014. [15] N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B, vol. 89, p. 125427, Mar 2014. [16] D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brzin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton– exciton annihilation in monolayer molybdenum disulfide,” Nano Letters, vol. 14, no. 10, pp. 5625–5629, 2014. [17] H. Gao, H. Rao, Y. Hu, J. Ju, Y. He, and Y. Wan, “Numerical simulation of multilayer organic light-emitting devices,” Proc. SPIE, vol. 7658, pp. 76580C–76580C–7, 2010. [18] Y. Divayana and X. W. Sun, “Observation of excitonic quenching by long-range dipole-dipole interaction in sequentially doped organic phosphorescent host-guest system,” Phys. Rev. Lett., vol. 99, p. 143003, Oct 2007. [19] S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B, vol. 75, p. 125328, Mar 2007. [20] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” Journal of Applied Physics, vol. 89, no. 8, pp. 4575–4586, 2001. [21] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction lightemitting devices,” Journal of Applied Physics, vol. 79, no. 10, pp. 7991–8006, 1996. [22] I. H. Campbell and D. L. Smith, “Schottky energy barriers and charge injection in metal/Alq/metal structures,” Applied Physics Letters, vol. 74, no. 4, pp. 561–563, 1999. [23] F.-M. Hsu, C.-H. Chien, C.-F. Shu, C.-H. Lai, C.-C. Hsieh, K.- W. Wang, and P.-T. Chou, “A bipolar host material containing triphenylamine and diphenylphosphoryl-substituted fluorene units for highly efficient blue electrophosphorescence,” Advanced Functional Materials, vol. 19, no. 17, pp. 2834–2843, 2009. [24] H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C.Wang, and K.-T. Wong, “1,3,5-triazine derivatives as new electron transporttype host materials for highly efficient green phosphorescent oleds,” J. Mater. Chem., vol. 19, pp. 8112–8118, 2009. [25] Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem., vol. 19, pp. 1353–1380, 2009. [26] K. Tsung and S. So, “High temperature carrier mobility as an intrinsic transport parameter of an organic semiconductor,” Organic Electronics, vol. 10, no. 4, pp. 661 – 665, 2009. [27] W. Brtting, S. Berleb, and A. G. Mckl, “Device physics of organic light-emitting diodes based on molecular materials,” Organic Electronics, vol. 2, no. 1, pp. 1 – 36, 2001. [28] K. Meisel, W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. de Leeuw, and M. Michels, “Chargecarrier mobilities in disordered semiconducting polymers: effects of carrier density and electric field,” physica status solidi (c), vol. 3, no. 2, pp. 267–270, 2006. [29] P. K.Watkins, A. B.Walker, and G. L. B. Verschoor, “Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology,” Nano Letters, vol. 5, no. 9, pp. 1814–1818, 2005. [30] M. C. J. M. Vissenberg and M. Matters, “Theory of the fieldeffect mobility in amorphous organic transistors,” Phys. Rev. B, vol. 57, pp. 12964–12967, May 1998. [31] O. V. Mikhnenko, P. W. M. Blom, and T.-Q. Nguyen, “Exciton diffusion in organic semiconductors,” Energy Environ. Sci., vol. 8, pp. 1867–1888, 2015. [32] E. B. Namdas, A. Ruseckas, I. D. W. Samuel, S.-C. Lo, and P. L. Burn, “Triplet exciton diffusion in factris( 2-phenylpyridine) Iridium(iii)-cored electroluminescent dendrimers,” Applied Physics Letters, vol. 86, no. 9, pp. –, 2005. [33] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, vol. 395, pp. 151–154, 09 1998. [34] A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Organic Electronics, vol. 6, no. 1, pp. 3 – 9, 2005. [35] C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Applied Physics Letters, vol. 76, no. 13, pp. 1650–1652, 2000.
|