跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡瑞強
研究生(外文):Ruei-Chiang Tsai
論文名稱:側流反應器架構於乙酸酯化之應用
論文名稱(外文):Side-Reactor Configuration for Acetic Acid Esterification
指導教授:余政靖
指導教授(外文):Cheng-Ching Yu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:92
中文關鍵詞:反應蒸餾側流反應器乙酸乙酯乙酸丁酯
外文關鍵詞:reactive distillationside reactorethyl acetatebutyl acetate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
反應性蒸餾結合反應與分離於同ㄧ單元內,可以節省能源的消耗及設備成本。除了其潛在的好處外,反應性蒸餾本身仍存在操作與設計上的問題,特別是針對填充異相觸媒之反應蒸餾塔經常會有觸媒老化、置換及裝填方式硬體設計的問題。本研究以乙酸酯化生成乙酸乙酯及乙酸丁酯之系統為例,探討利用側流反應器架構來替代反應性蒸餾。根據Tang et al.(2005)對於乙酸乙酯系統反應性蒸餾之設計可以發現接近90%之反應量發生於反應蒸餾塔塔底部分,其餘10%則發生於10板反應板之內。此結果自然地使我們聯想到將所有觸媒填入塔底部的反應器/蒸餾塔偶合架構,稱為單一反應板反應蒸餾(Single Reactive Tray, SRT)。利用此架構可以解決傳統反應性蒸餾在操作上之問題。然而模擬的結果顯示,將所有觸媒填充到塔底並無法達到與反應性蒸餾相同之結果(轉化率約93%),因此提出另ㄧ替代設計,保留原先單一反應板反應蒸餾架構,在塔的外部加入一反應器,稱為側流反應器架構(Side Reactor Configuration,SRC)。針對此架構其主要之設計變數為塔底填充觸媒量(Wcat,bot)、反應器達平衡轉化率之百分比(%Xeq)、抽出(Nss,w)與送回塔板位置(Nss,r)及抽出物流之流量(Fss)。運用系統化的方法進行側流反應器架構的設計,並以年總成本(TAC)為基準進行比較,進而獲得最適之設計結果。就年總成本而言,側流反應器架構相較於反應性蒸餾僅大約5%的差異。

接下來考慮乙酸丁酯系統,其反應物之沸點排序與反應的分佈都有別於乙酸乙酯系統,對於此系統,針對兩種架構進行探討,首先為一前置反應器加側流反應器架構(反應物進入前置反應器中進行反應後送入塔內),另ㄧ架構為所有反應器皆為側流反應器之架構。結果顯示利用所有反應器皆為側流反應器之架構較一前置反應器加側流反應器架構效果要來的好。在使用四個側流反應器之架構下,其年總成本相較於反應蒸餾約高出25%。

針對本研究的兩個系統,雖然在年總成本上,側流反應器架構較反應蒸餾要來的高,但若考慮到觸媒置換的便利性而言,側流反應器架構將為替代傳統反應性蒸餾極佳之選擇。
Reactive distillation (RD) combines reaction and separation in a single unit to reduce energy consumption and capital investment. Despite of potential advantages, the reactive distillation may suffer from maintenance/design problems such as catalyst deactivation/replacement and hardware design (for catalyst packing), especially for heterogeneous catalyst such as ion exchange resin. In this work, an alternative design, side reactor configuration, is sought and the processes of interest are the production of the ethyl acetate (EtAc) and the butyl acetate (BuAc) via esterification. The reactive distillation study in (Tang, et al., 2005) reveals that almost 90% conversion takes place in the column base of the RD and the rest of the 10% conversion occurs in the 10 reactive trays. This naturally leads to a coupled reactor/distillation configuration where all of the catalyst is packed in the bottoms base, denoted as Single Reactive Tray reactive distillation (SRT) hereafter. This mitigates the maintenance problem associated with conventional RD. However, simulation results show that, with the same amount catalyst loading (Wcat,RD), the SRT configuration cannot achieve the same performance as the RD (~93% conversion). Another alternative is adding external reactors to the Single Reactive Tray distillation column and this is termed as the Side Reactor Configuration (SRC). Unlike conventional reactive distillation design, the SRC design is less clear and design variables include: catalyst loading in the column base (Wcat,bot), % of equilibrium conversion for side reactor (% Xeq), sidestream withdrawn and return trays (Nss,r), sidestream flow rate (Fss). A systematic design procedure is devised for the SRC design and the objective function to be minimized is the total annual cost (TAC). The results show that the TAC of the SRC only increases by a factor of 5% as compared to that of the RD. The butyl acetate (BuAc) system is considered next. It differs from the EtAc system in (1) relatively even reaction distribution across reactive zone and (2) boiling point distribution where both reactants are intermediate keys. Two possible SRC configurations are explored. One is the pre-reactor (only one inlet stream to the column) plus side reactors and the other is complete side reactor scheme where all reactors coupled with the column. The results show that the complete side reactor scheme performs much better as compared to the pre-reactor plus side reactor scheme. As the total number of reactor increases to four, the TAC only increases by a factor of 25% as compared to that of the RD. For the two cases studied, the TACs of the SRC is slightly larger than that of the RD, however, considering the ease of catalyst replacement, the Side Reactor Configuration offers attractive alternative to conventional reactive distillation.
誌謝 I
摘要 III
Abstract V
目錄 VII
圖索引 XI
表索引 XIII
1 緒論(Introduction) 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 7
1.4 組織章節 8
2 熱力學及動力學模式 9
2.1 前言 9
2.2 乙酸乙酯系統 10
2.2.1液相使用之熱力學模式 11
2.2.2氣相使用之熱力學模式 12
2.2.3乙酸乙酯反應系統之動力學分析 13
2.3 乙酸丁酯系統 14
2.3.1液相使用之熱力學模式 15
2.3.2氣相使用之熱力學模式 16
2.3.3乙酸丁酯反應系統之動力學分析 17
3 乙酸乙酯系統穩態設計 19
3.1 前言 19
3.2 乙酸乙酯程序之描述 19
3.3 單一反應板反應蒸餾塔架構 22
3.3.1單一反應板架構最適化設計步驟 26
3.3.2單一反應板架構最適化設計結果 27
3.4 乙酸乙酯側流反應器架構 29
3.4.1乙酸乙酯側流反應器架構程序之描述 29
3.4.2側流反應器架構最適化設計步驟 31
3.4.3側流反應器架構最適化設計結果 32
3.4.3.1改變抽出物流送回塔板位置(Nss,r)之影響 32
3.4.3.2改變反應器達平衡轉化率之百分比(%Xeq)的
影響 35
3.4.3.3改變抽出物流流量(Fss)的影響 36
3.4.3.4改變塔底填充觸媒量(Wcat,bot)的影響 38
3.4.3.5塔底填充觸媒量對抽出物流流量及反應器達平衡轉
轉化率百分比之影響 39
3.5 不同程序架構之結果與比較 41
3.5.1不同程序架構最適化設計結果比較 41
3.5.2不同程序架構塔內溫度分佈比較 44
3.5.3不同程序架構塔內組成分佈比較 47
4 乙酸丁酯系統穩態設計 51
4.1 前言 51
4.2 乙酸丁酯反應蒸餾程序之描述 52
4.3 乙酸丁酯側流反應器架構 55
4.3.1乙酸丁酯側流反應器架構程序之描述 55
4.3.2乙酸丁酯側流反應器架構最適化設計步驟 56
4.3.3乙酸丁酯1 PR + 2SR架構最適化設計結果 58
4.3.3.1改變抽出流量(Fss)佔總塔板流量之比例(PAR)的影響 58
4.3.3.2改變達反應器平衡轉化率之百分比(%Xeq)的影響 59
4.3.3.3改變反應器出口物流進料板位置(NF)的影響 59
4.3.3.4改變個別反應器抽出物流之塔板位置(Nss,w)與送回塔板位置(Nss,r)的影響 59
4.3.4乙酸丁酯1 PR + 3SR架構最適化設計結果 63
4.3.4.1改變反應器出口物流進料板位置(NF)及個別反應器抽出物流之塔板位置(Nss,w)與送回塔板位置(Nss,r)的影響 63
4.3.5乙酸丁酯 3SR架構 66
4.3.5.1 前言 66
4.3.5.2 乙酸丁酯3SR架構最適化設計步驟 67
4.3.5.3 乙酸丁酯3SR架構最適化設計結果 67
4.3.5.3.1 改變抽出物流流量的影響 67
4.3.5.3.2 改變抽出及送回物流塔板位置的影響 68
4.3.6乙酸丁酯 4SR架構 70
4.3.6.1 前言 70
4.3.6.2 乙酸丁酯4SR架構最適化設計結果 71
4.3.6.2.1 改變抽出物流流量、抽出及送回物流塔板位置的影響71
4.4 不同程序架構之結果與比較 73
4.4.1不同程序架構最適化設計結果比較 73
4.4.2不同程序架構塔內溫度分佈比較 77
4.4.3不同程序架構塔內組成分佈比較 80
5 結論 83
參考文獻 84
附錄 89
A. TAC計算公式 89
[中 文]
[1] 賴一寬,「共沸進料之反應蒸餾程序設計 : 乙酸乙酯及乙酸異丙酯」,國立臺灣大學化學工程學硏究所碩士論文 (2005)。
[2] 陳毅偉,「異相反應蒸餾系統的設計與控制」,國立臺灣大學化學工程學硏究所碩士論文 (2004)。
[3] 湯永堂,完整乙酸乙酯反應蒸餾程序之設計與控制,國立台灣大學化學工程學研究所博士論文(2003).

[英 文]
[4] Aspen Plus, Release 11.1, Aspen Technology, Inc., Cambridge, MA, USA (2001).
[5] Al-Arfaj, M. A.; Luyben, W. L., “Effect of Number of Fractionating Trays on Reactive Distillation Performance.” AIChE J., 46(12), 2417 (2000).
[6] Barbosa, D.; Doherty, M. F., “Simple Distillation of Homogeneous Reactive Mixtures.” Chem. Eng. Sci., 43(3), 541 (1988)
[7] Baur, R.; Krishna, R., “Distillation Column with Reactive Pump Arounds: An Alternative to Reactive Distillation.” Chem. Eng. Process., 43(3), 435(2004).
[8] Bisowarno, B. H.; Tian, Y. C.; Tade´, M. O. “Application of Side Reactors on ETBE Reactive Distillation.” Chem. Eng. J., 99, 35(2004).
[9] Chen, F.; Huss, R. S.; Malone, M. F.; Doherty, M. F., “Simulation of Kinetic Effects in Reactive Distillation.” Comput. Chem. Eng., 24(11), 2457 (2000)
[10] Citro, F.; Lee, J. W. “Widening the Applicability of Reactive Distillation Technology by Using Concurrent Design. Ind. Eng. Chem. Res., 43, 375(2004).
[11] Doherty, M. F.; Buzad, G., “Reactive Distillation by Design.” Chem. Eng. Res. Des, 70(A5), 448 (1992).
[12] Doherty, M. F. and Malone, M. F.,Conceptual Design of Distillation Systems, McGraw-Hill, New York, USA (2001).
[13] Douglas, J. M., Conceptual design of chemical processes, McGraw-Hill, New York, USA (1998).
[14] Gangadwala, J.; Kienle, A., “MINLP Optimization of Butyl Acetate Synthesis.”Chem. Eng.Process.,46(2),107(2007)
[15] Gangadwala, J.; Mankar, S.; Mahajani, S.; Kienle, A.; Stein, E. “Esterification of acetic acid with butanol in the presence of ionexchange resins as catalysts.” Ind. Eng. Chem. Res., 42, 2146(2003).
[16] Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K., Azeotropic Data, Weinheim : Wiely-VCH, Germany (2004).
[17] Guttinger, T. E.; Morari, M., “Predicting Multiple Steady States in Equilibrium Reactive Distillation. 1. Analysis of Nonhybrid Systems.” Ind. Eng. Chem. Res., 38(4), 1633 (1999).
[18] Guttinger, T. E.; Morari, M., “Predicting Multiple Steady States in Equilibrium Reactive Distillation. 2. Analysis of Hybrid Systems.” Ind. Eng. Chem. Res., 38(4), 1649 (1999).
[19] Hangx, G.; Kwant, G.; Maessen, H.; Markusse, P.; Urseanu, I. Reaction Kinetics of the Esterification of Ethanol and Acetic Acid Towards Ethyl Acetate; Deliverable 22, Intelligent Column Internals for Reactive Separations (INTINT), Technical Report to the European Commission: 2001.
[20] Hayden, J. G.; O’Connell, J. P., “A Generalied Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Proces Des., 14, 209 (1975).
[21] Horsley, L. H., Azeotropic data - III, Advances in Chemistry Series No. 116, American Chemical Society, Washington, D.C. (1973).
[22] Jacobs, R.; Krishna, R., “Multiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis.” Ind. Eng. Chem. Res., 32(8), 1706 (1993).
[23] Jakobsson, K.; Pyhalahti, A.; Pakkanen, S.; Keskinen, K.; Aittamaa, J., “Modelling of a Side Reactor Configuration Combining Reaction and Distillation.” Chem. Eng. Sci. , 57(9), 1521(2002).
[24] Kaymak, D. B.; Luyben, W. L. “Design of Distillation Columns with External Side Reactors.” Ind. Eng. Chem. Res., 43, 8049(2004).
[25] Kaymak, D. B.; Luyben, W. L.; Smith, O. J. “The Effective of Relative Volatility on the Quantitative Comparison of Reactive Distillation and Conventional Multi-Unit Systems.” Ind. Eng. Chem. Res., 43, 3151(2004).
[26] Lai, I. K.;Hung, S. B.;Hung, W. J.;Yu, C. C.;Lee, M. J.;Huang, H. P. “Design and Control of Reactive Distillation for Ethyl and Isopropyl Acetates Production with Azeotropic feeds.” Chem. Eng. Sci., 62, 878(2007).
[27] Malone, M. F. and Doherty, M. F.,“Reactive Distillation.” Ind. Eng. Chem. Res., 39(11), 3953 (2000)
[28] Nijhuis, S.A.; Kerkhof, F. P. J. M.; Mak, A. N. S. “Multiple Steady States During Reactive Distillation of Methyl Tert-Butyl Ether.” Ind. Eng. Chem. Res., 32(11), 2767 (1993).
[29] Ojeda Nava, J. A.; Baur, R.; Krishna, R.“Combining Distillation and Heterogeneous Catalytic Reactors.” Chem. Eng. Res. Des., 82 (A2), 160(2004).
[30] Okasinski, M. J.; Doherty, M. F.,“Design Method for Kinetically Controlled, Staged Reactive Distillation Columns.” Ind. Eng. Chem. Res., 37(7), 2821 (1998).
[31] Ouni, T.; Jakobsson, K.; Pyha¨lahti, A.; Aittamaa, J. “Enhancing Productivity of Side Reactor Configuration Through Optimizing the Reaction Conditions.” Chem. Eng. Res. Des., 82 (A2), 167(2004).
[32] Perry, R. H.; Green, D. W.; Maloney, J. O., Perry’s Chemical Engineers''Handbook, 7th Ed., McGraw-Hill: International (1997).
[33] Ryan, P J.; Doherty, M. F., “Design/optimization of ternary heterogeneous azeotropic distillation sequences.” AIChE J., 35(10), 1592 (1989).
[34] Schoenmakers, H.; Buhler, W., “Distillation Column with External Reactors - an Alternative to the Reaction Column.” Chem. Ing. Tech., 54(2), 163(1982).
[35] Sundmacher, K. and Kienle, A., Reactive Distillation:Status and Future Directions, Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany (2003).
[36] Tang, Y. T., Chen, Y. W., Huang, H. P. and C. C. Yu. “Design of Reactive Distillations for Acetic Acid Esterification.” AIChE J., 51(6), 1683(2005).
[37] Taylor, R.; Krishna, R., “Modeling reactive distillation”, Chem. Eng. Sci., 55, 5183(2000)
[38] Venkataraman, S.; Chan, W. K.; Boston, J. F., “Reactive Distillation Using ASPEN PLUS,” Chem. Eng. Prog., Aug., 45, (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top