跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊文雯
研究生(外文):Wen-Wen Yang
論文名稱:農桿菌轉殖法應用於香蕉抗萎縮病毒之研究
論文名稱(外文):Studies on genetic transformation of banana for resistance to banana bunchy top virus using Agrobacterium tumefaciens
指導教授:黃鵬林杜宜殷
指導教授(外文):Pung-Ling HuangYi-Yin Do
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:香蕉香蕉萎縮病農桿菌癒傷組織
外文關鍵詞:bananabanana bunchy top virusAgrobacteriumcallus
相關次數:
  • 被引用被引用:2
  • 點閱點閱:518
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:1
本論文以香蕉品種北蕉 (Musa spp., cv. ‘Pei Chiao’, Cavendish,AAA group) 雄花序之果手原體為試驗之初始材料,進行香蕉癒傷組織誘導方式之改進及農桿菌媒介法之轉殖,並以萎縮病毒反義複製酶基因之 Raja 品種轉殖香蕉進行香蕉萎縮病毒之抗病接種試驗。
於香蕉癒傷組織之誘導上,以 picloram、dicamba、TDZ、以及 flurprimidol 四種不同生長調節劑與洋菜或水晶洋菜做為凝膠劑的相互組合試驗,結果以培養基含有 picloram 之組合能誘導多數的金黃色癒傷組織,而培養基含有 TDZ 之組合則不會產生金黃色的癒傷組織,但於 1 mg/l 之 TDZ 濃度下,能顯著降低培植體的褐化率。不同濃度之 picloram 以 1 mg/l 誘導癒傷組織的效果最佳;而以 picloram、2,4-D、IAA 與 NAA 三種植物生長素之組合,則以 picloram 與 2,4-D 之組合對癒傷組織誘導之評估最佳。
經測試影響農桿菌媒介法對香蕉果手原體進行基因轉殖效率之各因子,包括使用之藥劑及菌液濃度、所須的共培養時期,及後續的篩選時期等,結果顯示較佳條件為將果手原體先進行為期十二天的前培養,之後以農桿菌品系 LBA4404,於其濃度為 OD600 = 1.0 時,在 200 µM 之乙醯丁香酮存在之情況下,進行為期二天的共培養,並於共培養處理後第十四天開始以 50 mg/l 之 G418 進行為期一個月之篩選,培植體於篩選處理後移至不含任何抗生素之培養基進行培養。而以超音波震盪對果手原體進行創傷處理,並配合農桿菌進行轉殖,雖然轉殖率均以超音波處理二秒為最高,但與未超音波處理之對照組相較,則超音波之創傷處理為非必要的轉殖處理。
於抗病接種試驗方面,乃使用轉殖香蕉萎縮病毒反義複製酶基因之 Raja 品種香蕉進行病毒接種,於受試之二十一個轉殖系中,已確定有六株轉殖系對香蕉萎縮病毒基因型Ⅰ具有抗性,而對香蕉萎縮病毒基因型Ⅰ不具抗性之轉殖系,對病毒的反應可分為快速發病及延遲發病,而延遲發病者之病徵則遲至隔年春季才表現。轉殖系於接種香蕉萎縮病毒基因型Ⅱ之後第三個月進行病徵觀察,只有二株轉殖系具較對照組明顯之病徵。進一步將轉殖系進行香蕉萎縮病毒不同基型因之複合感染試驗,受試之原抗萎縮病毒基因型Ⅰ之三株轉殖系植株,於接種基因型Ⅱ之後,有二株出現萎縮病徵,經聚合酶連鎖反應偵測受試轉殖株體內之病毒,呈現正反應,顯示其對萎縮病毒為耐病性;而另一株則完全沒有病徵表現,以聚合酶連鎖反應偵測病毒於受試轉殖株體內之含量,亦呈現負反應,顯示該植株對萎縮病毒具有完全的抗性,故轉殖香蕉萎縮病毒反義複製酶基因於香蕉為可行之抗病方式。

The development of a regeneration system from banana (Musa spp. cv. ‘Pei Chiao’, Cavendish, AAA group) hand primordia on male flowers is described. The most important factors affecting embryogenic callus initiation were the source of explant and the composition of the culture medium. The closer the hand primordia is situated to the inflorescence apical meristem, the stronger is the regenerative capability. Improved callus initiation was obtained on culture medium supplemented with 1 mg/l picloram and 4 mg/l 2,4-D. Somatic embryogenesis was observed on callus cultures subcultured consecutively to a culture medium containing 1 mg/l picloram, 4 mg/l 2,4-D, 1 mg/l IAA, and 1 mg/l NAA. Somatic embryo germination and plantlet development was obtained using established protocols.
A protocol for the production of transgenic banana (Musa spp. cv. ‘Pei Chiao’, Cavendish, AAA group) was developed via Agrobacterium-mediated genetic transformation of hand primordia. Two disarmed Agrobacterium tumefaciens strains, A 281 and LBA 4404, both carrying the binary plasmid pBIRC1 with the nptⅡ gene were evaluated as vector systems. A number of parameters were tested with respect to maximizing transformation efficiency. While wounding was inhibitory, the pre-culture (12 days), acetosyringone treatment (200 μM), bacterial growth phase (optical density; OD600 = 1.0), co-cultivation period (2 days) had positive effects on transformation. Following co-cultivation, hand primordia were placed on multiplication medium with cefotaxime for 2 weeks then transfered onto the same medium and stressed with geneticin (50 mg/l) for 1 month. Further selection occurred in the medium at an elevated geneticin level (100 mg/l). A number of geneticin-resistant microadventitious buds were multiplied in vitro.
Banana plants transformed with the banana bunchy top virus (BBTV) antisense replicase gene were generated and twenty-one independently transformed plant lines were analyzed for resistance to BBTV. Three different responses were obtained. Some of the transgenic plants showed a pre-established, complete, and highly resistant phenotype since no viral symptoms were observed, and no virus detected. Some of the transgenic plants showed no viral symptoms before winter, but showed a delayed viral symptom in the next spring. The remaining plants from these plants showed a rapid disease symptom. Furthermore, the transformants resistant to BBTV genotypeⅠwere secondary challenged with BBTV genotypeⅡ. Transformants exhibited two different responses. One transgenic plant still showed complete, highly resistant phenotype since no viral symptoms were observed, and no virus detected. The other two transformants showed disease symptom after 2 months of inoculation.

內 容 目 次
中 文 摘 要
Abstract
前 言
前 人 研 究
一、 香蕉組織培養之再生系統
二、 香蕉萎縮病
(一)、 香蕉萎縮病防治上的限制因子
1、 交叉保護
2、 化學藥劑防治
3、 生物防治
(二)、 香蕉萎縮病毒
三、 轉殖植物的抗病機制
(一)、 Coat protein-mediated protection
(二)、 Satellite RNA-mediated resistance
(三)、 Replicase-mediated resistance
四、 基因默化 (gene silencing) 之應用
五、 過敏性反應 (Hypersensitive-response,HR)
材 料 與 方 法
一、 試驗材料
(一)、 植物材料
(二)、 聚合酶連鎖反應使用之引子對
二、 香蕉組織培養之再生系統
(一)、 生長調節劑及凝膠劑之處理
(二)、 TDZ處理
(三)、 Picloram 處理
(四)、 TDZ 與auxin之組合處理
(五)、 Picloram 與auxin 之組合處理
三、 影響農桿菌媒介法進行香蕉果手原體基因轉殖效率因子之分析
(一)、 農桿菌轉殖法
(二)、 旋轉處理對果手原體誘導不定芽之影響
(三)、 果手原體對 geneticin (G418) 之天然抗性
(四)、 農桿菌感染果手原體之最適濃度
(五)、 乙醯丁香酮 (Acetosyringone) 對轉殖效率之影響
(六)、 農桿菌品系對轉殖效率之影響
(七)、 共培養天數對果手原體轉殖效果之影響
(八)、 前培養日數 (preincubation) 對轉殖效率之影響
(九)、 不同共培養時期處理之培植體
四、 農桿菌配合超音波震盪轉殖法 (Sonication-assisted Agrobacterium - mediated transformation) 對香蕉果手原體轉殖效率之影響
五、 香蕉萎縮病毒反義複製酶基因之轉殖植株之抗病接種
(一)、 植物材料
(二)、 病毒接種源
(三)、 蚜蟲之獲毒
(四)、 病毒接種條件
(五)、 接種株之採樣部位
(六)、 香蕉萎縮病毒汁液之製備
(七)、 DAS-ELISA 步驟
(八)、 病毒核酸之製備
(九)、 聚合酶連鎖反應
(十)、 轉殖香蕉對萎縮病毒基因型Ⅰ之接種測試
(十一)、 轉殖香蕉對萎縮病毒基因型Ⅱ之接種測試
(十二)、 轉殖香蕉對萎縮病毒基因型Ⅰ及基因型Ⅱ之複合接種測試
(十三)、 轉殖香蕉內含香蕉條紋病毒之測試
結 果
一、 利用果手原體誘導癒傷組織之研究
(一)、 生長調節劑及凝膠劑對誘導癒傷組織發生率之影響
(二)、 TDZ濃度對誘導癒傷組織發生率的影響
(三)、 TDZ 與不同生長調節劑之相互組合對誘導癒傷組織之影響
(四)、 Picloram 濃度對誘導癒傷組織發生率的影響
(五)、 Picloram 與不同生長調節劑相互組合之培養基對誘導癒傷組織之影響
二、 農桿菌媒介法進行香蕉果手原體基因轉殖效率因子之分析
(一)、 旋轉處理對誘導不定芽之影響
(二)、 果手原體對 geneticin (G418) 之天然抗性
(三)、 農桿菌接種果手原體之最適濃度
(四)、 乙醯丁香酮 (acetosyringone) 對轉殖效率之影響
(五)、 農桿菌品系對轉殖效率之影響
(六)、 共培養天數對果手原體轉殖效果之影響
(七)、 前培養日數對轉殖效率之影響
(八)、 不同共培養時期處理於前培養之培植體
(九)、 農桿菌配合超音波震盪轉殖法
三、 香蕉萎縮病毒反義複製酶基因之轉殖株系之抗病接種
(一)、 轉殖香蕉對香蕉萎縮病毒基因型Ⅰ之接種測試
1、 病徵觀察
2、 ELISA 檢測
3、 PCR 檢測
(二)、 轉殖香蕉對香蕉萎縮病毒基因型Ⅱ之接種測試
1、 病徵觀察
2、 ELISA 檢測
(三)、 轉殖香蕉對香蕉萎縮病毒基因型Ⅰ及基因型Ⅱ之複合接種測試1、 病徵觀察
2、 ELISA 檢測
3、 PCR 檢測
(四)、 轉殖香蕉之香蕉條紋病毒潛伏檢測
1、 病徵觀察
2、 PCR 檢測
討 論
一、 香蕉組織培養之再生系統
二、 香蕉萎縮病毒反義複製酶基因之轉殖
三、 香蕉萎縮病毒反義複製酶基因之轉殖植株之抗病接種
參 考 文 獻
附錄一、 香蕉幼雄花序培養所使用之培養基配方
附錄二、 香蕉癒傷組織使用之 YC 培養基與不同生長調節劑組合之配方
附錄三、 香蕉轉殖參試之農桿菌品系及所含質體
圖一、 香蕉幼雄花序衍生之癒傷組織類型
圖二、 香蕉幼雄花序培養之間接體胚發生
圖三、 果手原體對 G418 之天然抗性
圖四、 農桿菌媒介法轉殖香蕉果手原體之流程圖
圖五、 擬轉殖植株之形態
圖六、 感染香蕉萎縮病毒基因型Ⅰ之轉殖植株其病徵表現比較
圖七、 接種香蕉萎縮病毒基因型Ⅰ之未轉殖對照植株 (A) 及轉殖植株 (B) 其葉片萎縮及葉脈透明化之病徵表現比較
圖八、 接種香蕉萎縮病毒基因型Ⅰ之未轉殖對照植株 (A) 及轉殖植株 (B) 其葉柄之深綠色條斑病徵表現比較
圖九、 接種香蕉萎縮病毒基因型Ⅰ之未轉殖對照植株 (A) 及轉殖植株 (B) 之葉片比較
圖十、 感染香蕉萎縮病毒基因型Ⅰ之轉殖植株其病毒系統之聚合酶連鎖反應之分子鑑別
圖十一、 經不同基因型香蕉萎縮病毒複合感染之轉殖植株表現型
圖十二、 感染香蕉萎縮病毒之轉殖植株其不同病毒基因型複合感染之聚合酶連鎖反應之分子鑑別。
圖十三、 轉殖植株其香蕉條紋病毒之聚合酶連鎖反應之分子鑑別。
表一、 生長素及凝膠劑對誘導癒傷組織發生率之影響
表二、 TDZ對香蕉癒傷組織發生率之影響
表三、 TDZ 與不同生長素組合之培養基對果手原體誘導癒傷組織之影響表四、 Picloram對誘導香蕉癒傷組織發生率之影響
表五、 Picloram 與不同生長素組合之培養基對果手原體誘導癒傷組織之影響
表六、 旋轉處理對香蕉果手原體誘導不定芽之影響
表七、 香蕉果手原體對 G418 之天然抗性
表八、 不同濃度之 G418 對培植體的篩選效率
表九、 農桿菌接種濃度對香蕉果手原體轉殖效率之影響
表十、 Acetosyringone 對香蕉轉殖處理不定芽發生之影響
表十一、 農桿菌品系對香蕉轉殖效率之影響
表十二、 農桿菌與香蕉果手原體之共培養天數對轉殖效率之影響
表十三、 果手原體之前培養日數對轉殖效率之影響
表十四、 不同共培養時期處理之培植體對轉殖效率之影響
表十五、 農桿菌轉殖於超音波處理之果手原體
表十六、 農桿菌與香蕉果手原體共同進行超音波處理之轉殖率
表十七、 轉殖植株接種香蕉萎縮病毒基因型Ⅰ之症狀一覽表
表十八、 轉殖植株接種香蕉萎縮病毒基因型Ⅰ之 ELISA 檢測一覽表
表十九、 轉殖植株接種香蕉萎縮病毒基因型Ⅰ之 PCR 一覽表
表二十、 轉殖植株接種香蕉萎縮病毒基因型Ⅱ之症狀一覽表
表二十一、 轉殖植株接種香蕉萎縮病毒基因型Ⅱ之 ELISA 檢測一覽表
表二十二、 不同基因型香蕉萎縮病毒複合感染之轉殖植株經聚合酶連鎖反應及 ELISA 檢測結果
表二十三、 偵測轉殖植株內含香蕉條紋病毒一覽表

吳瑞鈺. 1987. 香蕉萎縮病病毒之特性及單元抗體. 國立台灣大學植物病蟲害學研究所博士論文. 212 pp.
李麗生. 1998. 應用農桿菌媒介法進行香蕉基因轉殖之試驗. 國立台灣大學園藝學研究所碩士論文. 95 pp.
孫守恭. 1961. 香蕉萎縮病毒之研究. 松本巍教授任教國立台灣大學三十週年紀念論文集. 國立台灣大學農學院專刊 10 號 82-109.
徐善德. 1995. 香蕉轉殖系統之建立及 ACC 合成酶反義基因之構築. 國立台灣大學園藝學研究所碩士論文. 97 pp.
馬溯軒, 許圳塗. 1972. 香蕉幼莖切頂組織培養應用於不定芽誘發之試驗. 中國園藝 18: 135-142.
馬溯軒, 許圳塗. 1974. 香蕉不定芽之組織培養育成幼株之試驗. 中國園藝 20: 6-12.
馬溯軒, 許圳塗. 1988. 植物再生與繁殖及改良. 園藝作物組織培養之應用研討會專集. p. 1-18. 國立台灣大學農學院園藝學系編印.
馬溯軒. 1988. 香蕉之體胚發生與植株再生. 園藝作物組織培養之應用研討會專集. p. 181-188. 國立台灣大學農學院園藝學系編印.
曹麗玉. 1998. 香蕉萎縮病毒系統之生物學與分子生物特性及其生態. 國立台灣大學植物病蟲害學研究所博士論文. 132 pp.
黃鵬林. 1980. 香蕉花序莖頂組織培養. 國立台灣大學園藝學研究所碩士論文. 80 pp.
André S. and M. R. Braga. 2002. Callus and cell suspension cultures of Rudgea jasminoides, a tropical woody Rubiaceae. Plant Cell, Tissue and Organ Cult. 68: 271-276.
Anonymous. 1997. FAOSTAT database. Food and agricultural organization, Rome.
Becker, D. K., B. Dugdale, M. K. Smith, R. M. Harding and J. L. Dale. 2000. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep. 19: 229-234.
Bejarano, E. R., A. Khashoggi, M. Witty, and C. Lichtenstein. 1996. Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc. Natl. Acad. Sci. 93: 759-764.
Bregitzer, P. 1992. Plant regeneration and callus type in barley: effect of genotype and culture medium. Crop Sci 32: 1108-1112.
Bringmann G. and H. Rischer. 2001. In vitro propagation of the alkaloid-producing rare African liana, Triphyophyllum peltatum (Dioncophyllaceae). Plant Cell Rep. 20: 591-595.
Burns, T. M., R. M. Harding and J. L. Dale. 1995. The genome organization of banana bunchy top virus: analysis of six ssDNA components. J. General Virology 76: 1471-1482.
Burns, T. M., R. M. Harding, and J. L. Dale. 1994. Evidence that banana bunchy top virus has a multiple componts genome. Arch. Virol. 137: 371-380.
Carman, J. G. 1988. Improved somatic embryogenesis in wheat by partial stimulation of the in-ovulo oxygen, growth-regulator and desiccation environments. Planta 175: 417-424.
Cervera M., J. A. Pina, J. Juárez, L. Navarro, and L. Peña. 1998. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep. 18: 271-278.
Chen, G., C. M. Ye, J. C. Huang, M. Yu, and B. J. Li. 2001. Cloning of the papaya ringspot virus (PRSV) replicase gene and generation of PRSV-resistant papayas through the introfuction of the PRSV replicase gene. Plant Cell Rep. 20: 272-277.
Cheng M., JE. Fry, S. Pang, H. Zhou, CM. Hironaka, DR. Duncan, TW. Conner, and Y. Wan. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971-980.
Clough S. J. and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Confalonieri M., A. Balestrazzi, and R. Cella. 1997. Genetic transformation of Populus deltoids and Populus × euramericana clones using Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 48: 53-61.
Conger, B. V., G. E. Hanning, D. J. Gray, J. K. Mcdaniel. 1983. Direct embryogenesis from mesophyll cells of orchardgrass. Science 221: 850-851.
Domergue, F. G. R., N. Ferrière and F. X. Côte. 2000. Morphohistological study of the different constituents of a banana (Musa AAA, cv. Grande naine) embryogenic cell suspension. Plant Cell Rep. 19: 748-754.
Dong J. Z. and A. McHughen. 1993. An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci. 88: 61-71.
Dugdale, B., D. K. Becker, P. R. Beetham, R. M. Harding and J. L. Dale. 2000. Promoters derived from banana bunchy top virus DNA- 1 to —5 direct vascular-associated expression in transgenic banana (Musa spp.). Plant Cell Rep. 19: 810-814.
Dugdale, B., P. R. Beetham, D. K. Becker, R. M. Harding and J. L. Dale. 1998. Promoter activity associated with the intergenic regions of banana bunchy top virus DNA- 1 to —6 in transgenic tobacco and banana cells. Journal of General Virology 79: 2301-2311.
Enríquez-Obregón GA., RI. Vázquwz-Padrón, DL. Prieto-Samsonov, GA. De la Riva, G. Selman-Housein. 1998. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206: 20-27.
Fitch M. M. and P. H. Moore. 1990. Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell, Tissue Organ Cult. 20: 157-163.
Folling L. and A. Olesen. 2001. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep. 20: 629-636.
Furmanowa M., K. Glownail, and K. Syklowska-Baranek. 1997. Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus media var. Hatfieldii. Plant Cell, Tissue Organ Cult. 49: 75-79.
Ganapathi T. R., N. S. Higgs, P. J. Balint-Kurti, C. J. Arntzen, G. D. May, and J. M. Van Eck. 2001. Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep. 20: 157-162.
Goddard, E. J. 1925. Bunchy top in bananas. Queensland Agric. J. 24: 424-429.
Hamilton, A. J. and D. C. Baulcombe. 1999. A species of small antisence RNA in posttranscriptional gene silencing in plants. Science 286: 950-952.
Hanzel, J., J. Miller, M. Brinkmann, E. Fendo. 1985. Genotype and media effects on callus formation and regeneration in barley. Crop Sci 25: 27-31.
Harper, G., J. O. Osuji, J. S. Heslop-Harrison, and R. Hull. 1999. Integration of banana badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255: 207-213.
Heath M. C. 2000. Non-host resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3: 315-319.
Hernández, J. B. P., S. Remy, V. G. Saúco, R. Swennen, and L. Sági. 1999. Chemotactic Movement and attachment of Agrobacterium tumefaciens to banana cells and tissues. J. Plant Physiol. 155: 245-250.
Hiei Y., S. Ohta, T. Komari, and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence anaylsis of the bounfaries of T-DNA. Plant J. 6: 271-282.
Hollmann, P. J., and G. K. Lohbrunner, S. F. Shamoun, and S. P. Lee. 2002. Establishment and characterization of Rubus tissue culture systems for in vitro bioassays against phytotoxins from Rubus fungal pathogens. Plant Cell, Tissue Organ Cult. 68: 43-48.
Ishida Y., H. Saito. S. Ohta, Y. Hiei, T. Komari, and T. kumashiro. 1996. High efficiency of transformation of maize (Zea mays L.) mediated by Agrobacterium trmefaciens. Nat Biotechnol 14: 745-750.
Karp, A. 1994. Origins, causes and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer, Dordrecht, pp 139-151.
Kiritani, K. and H. J. Su. 1999. Papaya ring spot, banana bunchy top, and citrus greening in the Asia and Pacific region: occurrence and control strategy. JARQ 33: 23-30.
Kjemtrup, S., K. S. Sampson, C. G. Peele, L. V. Nguyen, M. A. Conkling, W. F. Thompson, and D. Robertson. 1998. Gene silencing from plant DNA carried by a geminivirus. Plant J. 14: 91-100.
Krikorian, A. D., H. Irizarry, R. Goenaga, M. E. Scott, and B. E. L. Lockhart. 1999. Stability in plant and bunch traits of a ‘French-type’ dwarf plantain micropropagated from the floral axis tip and five lateral corm tips of a single mother plant: good news on the tissue culture and bad news on banana streak virus. Scientia Hort. 81: 159-177.
Llave, C., K. D. Kasschau, and J. C. Carrington. 2000. Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. 97: 13401-13406.
Lomonossoff, G. P. 1995. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33: 323-343.
Lührs, R. and H. Lörz. 1987. Plant regeneration in vitro from embryogenic cultures of spring- and winter-type barley, Hordeum vulgare. Theor Appl Genet 75: 16-25.
Magee, C. J. P. 1927. Investigations on the bunchy top disease of bananas. Counc. Sci. Ind. Res. Bull. 30: 67.
Mattews, R. E. F. 1979. Classification and nomenclature of viruses (3rd report of the international committee on taxonomy of viruses). Intervirology 12: 132-296.
Mattews, R. E. F. 1981. Plant virology (2nd ed). Academic Press, Inc.
Matthew, R. E. F. 1982. Classification and nomenclature of viruses. Intervirolgy 17: 1-200.
May, G. D., R. Afza, H. S. Mason, A. Wiecko, F. J. Novak, and C. J. Arntzen. 1995. Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology 13: 486-492.
Mezzetti B., G. Savini, F. Carnevali, and D. Mott. 1997. Plant genotype and growth regulators interaction affecting in vitro morphogenesis of blackberry and raspberry. Biol. Plant. 39: 139-150.
Mondal T. K., A. Bhattacharya, P. S. Ahuja, and P. K. Chand. 2001. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 20: 712-720.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
Ndowora, T., G. Danal, D. LaFleur, G. Harper, R. Hull, N. E. Olszewski, and B. Lockhart. 1999. Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255: 214-220.
Nobre J., D. J. Keith, and J. M. Dunwell. 2001. Morphogenesis and regeneration from stomatal guard cell complexes of cotton (Gossypium hirsutum L.) Plant Cell Rep. 20: 8-15.
O’Kennedy M. M., J. T. Burger, and D. K. Berger. 2001. Transformation of white maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep. 20: 721-730.
Oldach K. H., A. Morgenstern, S. Rother, M. Girgi, M. O’Kennedy, and H. Lörz. 2001. Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet [Pennisetum glaucum (L.) R. Br.] and Sorghum bicolor (L.) Moench. Plant Cell Rep. 20: 416-421.
Olhoft P. M., K. Lin, J. Galbraith, N. C. Nielsen, and D. A. Somers. 2001. The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep. 20: 731-737.
Palukaitis, P., and M. Zaitlin. 1997. Replicase-mediated resistance to plant virus disease. Adv. Virus. Res., submitted.
Pedoras, L. P., I. K. Vasil. 1996. Optimization of somatic embryogenesis and long-term regeneration in callus cultures of diplogerennial Teosinte (Zea diploperennis Iltis, Doebley & Guzmán). Maydica 41: 333-348.
Pena L., M. Cervera, J. Juarez, C. Ortega, JA. Pina, N. Duran-Vila, and L. Navarro. 1995. High efficiency Agrobacterium-mediated transformation and regeneration of Citrus. Plant Sci. 104: 183-191.
Popelka J. C. and F. Altpeter. 2001. Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereale L.) inbred lines. Plant Cell Rep. 20: 575-582.
Rance, I. M., W. Tian, H. Mathews, A. Kochko, R. N. Beachy, and C. Fauquet. 1994. Partial desiccation of mature embryo-derived calli, a simple treatement that dramatically enhances the regeneration ability of Indica rice. Plant Cell Rep. 13: 647-651.
Richert-Pöggeler, K. R. and R. J. Shepherdt. 1997. Petunia vein-clearing virus: a plant pararatrovirus with the core sequences for an integrase function. Virology 236: 137-146.
Rohini, V. K. and K. S. Rao. 2000. Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci. 150: 41-49.
Sági, L., B. Panis, S. Remy, H. Schoofs, K. D. Smet, R. Swennen, and B. P. A. Cammue. 1995. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/Technology 13: 481-485.
Santarém, E. R., H. N. Trick, J. S. Essig and J. J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep. 17: 752-759.
Sgi, L., B. Panis, S. Remy, H. Schoofs, K. S. Smet, R. Swennen and B. P. A. Cammue. 1995. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/Technology 13: 481-485.
Stachel S. E., E. Messens, M. Van Montagu, P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells which activate the T-DNA transfer process in Agrobacterium tumefaciens. Nature 318: 624-629.
Stanley, J., T. Frischmuth, and S. Ellwood. 1990. Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc. Natl. Acad. Sci. 87: 6291-6295.
Suzuki S. and M. Nakano. 2002. Agrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. ex Bak. Plant Cell Rep. 20: 835-841.
Suzuki S., K. Supaibulwatana, M. Mii, M. Nakano. 2001. Production of transgenic plants of Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci. 161: 89-97.
Taylor H. J., M. Edwards, R. J. Kiernan, C. D. M. Davey, D. Blakesley, and G. G. Henshaw. 1996. Development of friable embryogenic callus and embryogenic suspension culture systems in cassva (Manihot esculenta Crantz). N. Biotechnology 14: 726-730.
Tenllado, F., I. García-Luque, M. T. Serra, and J. R. Díaz-Ruíz. 1995. Nicotiana benthamiana plants transformed with the 54-kDa region of the pepper mild mottle tobamovirus replicase gene exhibit two types of resistance against viral infection. Virology 211: 170-183.
Thomas, J. E., A. D. W. Greening, J. W. Daniells, and L. A. McMichalael. 1998. Banana streak virus in Australia. pp. 15-19 in PROMUSA: Banana streak virus: a unique virus Musa interaction? INIBAP, Montpellier, France.
Tingay S., D. McElroy, R. Kalla, S. Fieg, M. Wang, S. Thornton, and R. Brettell. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369-1376.
Touraev A., O. Vicente, and E. Heberle-Bors. 1997. Initiation of microspore embryogenesis by stress. Trends Plant Sci. 2: 297-302.
Trick H. N. and J. J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17: 482-488.
Trick, H. N. and J. J. Finer. 1998. Sonication - assisted Agrobacterium - mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17: 482-488.
Tsukahara, M., and T. Hirosawa. 1992. Simple dehydration treatment promotes plantlet regeneration of rice (Oryza sativa L.) callus. Plant Cell Rep. 11: 550-553.
Usami S., S. Morikawa, I. Takebe, and Y. Machida. 1987. Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circulatization and vir gene expression in Agrobacterium. Mol. Gen. Genet. 209: 221-226.
Vuylsteke, D., and R. Swennen. 1992. Biotechnological approaches to plantain and banana improvement at IITA. In: Thottapilly G., L. Monti, R. D. R. Mohan, and A. W. Moore (eds) Biotechnology: enhancing research on tropical crops in Africa. International institute of tropical agriculture (IITA), Ibadan, Nigeria, pp143-150.
Wardlaw, C. W. 1972. Banana disease licluding plantains and abaca. 2nd ed. Longman group limited, London.
Wenck, A. R., M. Quinn, R. W. Whetten, G. Pullman, and R. Sederoff. 1999. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39: 407-416.
Wintermantel, W. M., N. Banerjee, J. C. Oliver, D. J. Paolillo, and M. Zaitlin. 1997. Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-mediated resistance. Virology 231: 248-257.
Wu, R. Y., and H. J. Su. 1990. Purification and characterization of banana bunchy top virus. J. Phythopathology 128: 153-160.
Wu, R. Y., L. R. You, and T. S. Soong. 1994. Nucleotide sequences of two circular single-stranded DNAs associated with banana bunchy top virus. Phytopathology 84: 952-958
Xie D. Y. and Y. Hong. 2001. Regeneration of Acacia mangium through somatic embryogenesis. Plant Cell Rep. 20: 34-40.
Yeh, H. H., H. J. Su and Y. C. Chao. 1994. Genome characterization and identification of viral-associated dsDNA component of banana bunchy top virus. Virology 198: 645-652.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱則剛(1996):建構主義知識論對教學與教學研究的意義。教育研究雙月刊第49期,p39-45。
2. 任宗浩(2001):心智模式動態變化之研究-物理現象的觀察與詮釋。科學教育學刊,2001,第九卷第二期,p147-168。
3. 江新合(1992):中學生浮力相關概念發展及其相關迷思概念的分析研究。高雄師大學報第三期,p139-177。
4. 李田英(1995):國小三到五年級自然科學課程學習困難之教材分析。師大學報第40期,p475-508。
5. 林紀慧(1998):個別差異和學習路徑策略與電腦超本文學習成效研究。新竹師院學報第十一期,p1-14。
6. 邱美虹(1993):類比與科學概念的學習。教育研究資訊1卷6期,p79-90。
7. 邱美虹、陳英嫻(1995):月相盈虧之概念改變。師大學報第40期,p509-548。
8. 邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊(2000)第八卷第一期,p1-34。
9. 陳文典、劉德生(1994):國小學童對熱與溫度概念的認知。科學教育學刊2:2,民83.09,p77-101
10. 張川木(1995):促進概念改變教學法I。科學教育月刊第185期,p21-27。
11. 張川木(1996):促進概念改變教學法II。科學教育月刊第186期,p10-18。
12. 張敬宜(1997):國小高年級學童蒸發、凝結與沸騰概念之研究。科學教育學刊1997,第五卷第三期,p321-346。
13. 郭重吉(1988):從認知的觀點探討自然科學的學習。教育學院學報第十三期,p351-378。
14. 郭重吉(1990):學生科學知識認知結構的評估與描述。彰化師範大學學報第一期,p279-320
15. 郭重吉(1991):國中學生熱與溫度概念的另有架構。彰化師範大學學報第二期,p436-463。