跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王博文
研究生(外文):Bo-WenWang
論文名稱:資料前處理及影片搜尋與推薦之資料探勘技術
論文名稱(外文):Data Pre-Processing and Data Mining Techniques for Video Retrieval and Recommendation
指導教授:曾新穆曾新穆引用關係
指導教授(外文):Vincent S. Tseng
學位類別:博士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:76
中文關鍵詞:資料探勘資料前處理遺失值處理協同式資訊過濾技術影片擷取影像註解影片推薦
外文關鍵詞:Data miningdata pre-processingmissing-value imputationcollaborative filteringvideo retrievalimage annotationvideo recommendation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:645
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 IV
ABSTRACT VI
誌 謝 VIII
Content IX
List of Figures XI
List of Tables XIII
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Overview of the Dissertation 3
1.2.1 Framework of Data Pre-Processing 4
1.2.2 Framework of Image-Based Video Retrieval 5
1.2.3 Framework of Two-Phase Video Recommender System 6
1.3 Dissertation Organization 6
Chapter 2 Background and Related Work 7
2.1 Missing-Value Imputation 7
2.2 Collaborative Filtering algorithms 8
2.3 Image Annotation 10
2.4 Video Retrieval 11
2.5 Video Recommendation 12
Chapter 3 Improving Missing-Value Estimation in Microarray Data with Collaborative Filtering Based on Rough-Set Theory 14
3.1 Introduction 14
3.2 Proposed Method 16
3.2.1 Overview of the proposed approach 17
3.2.2 Preprocessing stage 18
3.2.3 Prediction stage 20
3.3 Experimental Evaluation 26
3.3.1 Datasets 26
3.3.2 Evaluation Metrics 27
3.3.3 Evaluations for the parameter settings 28
3.3.4 Comparisons between CFBRST and other approaches 30
3.4 Summary 32
Chapter 4 Semantic Video Retrieval by Integrating Concept- and Content-Aware Mining 33
4.1 Introduction 33
4.2 Proposed System 35
4.2.1 System Framework 35
4.2.2 Off-line Training Phase 37
4.2.3 On-line Query Phase 39
4.3 Experimental Evaluations 41
4.3.1 Experimental Results for Image Annotation 42
4.3.2 Experimental Results for Concept Matching 44
4.4 Summary 45
Chapter 5 An Effective Two-Phase Collaborative Filtering Algorithm for Recommender Systems 46
5.1 Introduction 46
5.2 Proposed System 47
5.2.1 Overview of the proposed approach 47
5.2.2 Off-line preprocessing phase 49
5.2.3 On-line prediction stage 51
5.3. Empirical evaluations 55
5.3.1 Impact of parameters on the performance of the proposed approach 57
5.3.2 Comparison of two-phase approaches and traditional approaches 58
5.3.3 Comparison of the impact of data sparsity on the performances of the two-phase approach and item-based CF 59
5.3.4 Empirical Study 60
5.4 Summary 60
Chapter 6 Conclusion and Future Work 62
6.1 Conclusion 62
6.2 Future Work 63
References 65
Publications 75


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊