跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 09:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文
研究生(外文):Wen Lin
論文名稱:第一部分:ProteinkinaseA及C對間質形成之調節作用PartII:在胚胎期運動神經間質蛋白對ProteinkinaseA調節神經傳遞之影響
論文名稱(外文):Part II:Differential Regulation of Fibronectin Fibrillogenesis by Protein Kinase A and C Part II:Modulation of Protein kinase A Activity in Synaptic Transmission by Matrix Proteins at developing Motorneurons
指導教授:符文美符文美引用關係
指導教授(外文):Wen-Mei Fu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:136
中文關鍵詞:間質形成神經傳遞
外文關鍵詞:Fibronectin assemblyProtein kinase AProtein kinase CSynatic Transmission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部分:
1.Fibronectin間質形成與細胞附著、移動及分化有關。但到目前為止,它的調節機轉仍未明朗。根據之前的研究報告指出,integrin與之有關。在本篇論文裡,則將探索protein kinase在fibronectin 間質形成中所扮演的角色,我們以免疫螢光染色的方法來定量分析Xenopus 細胞培養之纖維母細胞聚合fibronectin的情形。
2.於細胞培養中直接加入soluble fibronectin (30μg/ml),可觀察到纖維母細胞將其轉化為固著的形式,且此一現象隨時間延長會有增加的趨勢,處理二天後,有些fibronectin間質形成於纖維母細胞之外。
3.前處理RGDS (50μg/ml)、 Rhodostomin (10μg/ml)、genistein (50μM)、cytochalasin D (1μM)、H-7 (10μM)、Ro-31-8220 (3μM)及forskolin (10μM)時,fibronectin的聚合作用明顯受到抑制。
4.當細胞共同處理fibronectin及TPA一小時,可明顯地加強fibronectin網狀結構的形成。
5.TPA促進Integrin及vinculin的clustering,而forskolin抑制之。
6.和soluble fibronectin培養一天後,將細胞以前述之抑制劑(Rhodostomin、genistein、cytochalasin D、H-7及forskolin)處理30分鐘,發現除Rhodostomin外,其餘藥物皆可有效的分解fibronectin的網狀結構。這顯示fibronectin間質形成是屬於動態變化的行為,且會受到protein kinase的調節。但已形成之fibronectin間質,則短時間內較不受disintegrin的影響。
7.Aprotinin (1μg/ml)、leupeptin (1μg/ml)及低濃度的matrix metalloproteinase inhibitor 1 (2μM),會拮抗forskolin的fibronectin網狀結構之分解作用,但genistein、cytochalasin D、H-7、Ro-31-8220的作用則不受影響。若給予高濃度的matrix metalloproteinase inhibitor 1 (150μM),則上述藥物的fibrillar fibronectin之分解作用均被拮抗。
8.總結此篇論文可得:fibronectin間質組成乃是動態的,其聚合與integrin有關。細胞骨架的重組、tyrosine kinase及serine-thereonine kinase均會調節此一作用。其中Protein kinase C 加強而protein kinase A會抑制fibronectin的聚合。
第二部分:
1.許多由荷爾蒙控制之生理反應,諸如分泌、基因表現及細胞增殖都經過第二訊息傳遞物─cAMP所調節。但即使cAMP是最先被證實和荷爾蒙作用有關之物質,其詳細機轉及過程中所受到的外在影響至今仍然未完全了解。
2.Fibronectin、laminin及collagen是細胞間質(Extracellular matrix;ECM)的成員,對於細胞的附著、遷徙、分化及增生皆扮演重要的角色。本實驗室先前的實驗發現,fibronectin及laminin可影響PKC或PKA的訊息傳遞路徑進而調節胚胎期運動神經自發性乙醯膽鹼(ACh)之釋放。因此本論文就以間質蛋白對PKA的作用為題,針對其調節胚胎期運動神經ACh的釋放之可能結果進行探討。
3.於一天大的爪蟾胚胎神經-肌細胞培養,在有神經支配的肌細胞上形成whole-cell recording (Vh=-60~-65mV),可記錄到自發性ACh所引起的微終板電流(spontaneous synaptic currents;SSCs),我們可以藉由記錄這樣的SSC頻率來研究胚胎期運動神經的活性。
4.Forskolin是adenylate cyclase的活化劑。培養在塗抹了fibronectin玻片的細胞於加入20μM forskolin後,其SSC頻率明顯地增加,然而,培養在塗抹laminin或collagen玻片的細胞於加入forskolin後,其SSC 頻率並無有意義的變化。
5.DBcAMP (1mM)是PKA的活化劑。同樣地只有加入培養在fibronectin-coated玻片的細胞,才可促使SSC頻率增加;而培養在laminin-coated或collagen-coated玻片的細胞則沒有影響。
6.將CGRP (3μM)直接加入培養在fibronectin-coated玻片的細胞,並不能改變自發性ACh釋放的頻率。
7.Isoproterenol是非選擇性的βagonist。培養在塗抹了fibronectin玻片的細胞於加入10μM Isoproterenol後,可觀察到SSC頻率明顯地增加,然而,培養在塗抹laminin、collagen玻片的細胞在加入isoproterenol後,其SSC 頻率並無有意義地增加。
8.Albuterol是選擇性的β2 agonist,一如前者,加入10μM Albuterol只可調節培養在fibronectin-coated玻片的細胞之SSC頻率。
9.將細胞培養在沒有塗抹任何間質的玻片,單獨給予isoproterenol (10μM)或soluble fibronectin (6μg/ml)並不能影響自發性ACh釋放的頻率,但若在給予isoproterenol (10μM)後十分鐘給予soluble fibronectin,則會使ACh自發性釋放增加。
10.將細胞培養在fibronectin-coated玻片上,於四小時後加入神經滋養因子再培養一天,而後觀察DBcAMP及isoproterenol對其自發性ACh釋放頻率之影響。發現BDNF可抑制DBcAMP所引發的 SSC增加,CNTF、GDNF及NT-3則反而會促進之。
11.總結此篇論文可知,fibronectin能影響β receptor的傳遞途徑,進而促使PKA的活化。故可由此而調節胚胎期運動神經自發性ACh之釋放,改變神經的活性。
Part I:
1.The assembly of fibronectin matrix is a key event in regulating cell adhesion, migration, and differentiation. The signal transduction pathway that regulates fibronectin assembly is still unclear. To elucidate the regulatory role of protein kinase in the formation of fibronectin matrix, we quantitatively examined the fibronectin assembly by fibroblast in Xenopus cell cultures using fluorescent immunocytochemistry.
2.Soluble form of bovine fibronectin was bath-applied to the cultures. Fibroblast changed the soluble form of fibronectin into immobilized form time-dependently.
3.Treatment with RGDS, Rhodostomin, genistein, cytochalasin D, H-7, Ro-31-8220 and forskolin inhibited the assembly of immobilized fibronectin.
4.When the fibronectin assembly was shortened to 1 hr, co-incubation with TPA significantly enhanced the formation of immobilized fibronectin.
5.The clustering of integrin and integrin were enhanced and inhibited by TPA and forskolin, respectively.
6.After one day’s incubation with soluble fibronectin to form immobilized fibronectin network, treatment with genistein, cytochalasin D, H-7 or forskolin for 30 min degraded the fibronectin networks, indicating that fibronectin fibrillogenesis is dynamic and modulated by protein kinases.
7.Aprotinin, leupeptin and matrix metalloproteinase inhibitor 1 (2μM) selectively antagonized the fibronectin matrix degradative action of forskolin, but not that caused by genistein, cytochalasin D and H-7. On the other hand, the higher concentration of matrix metalloproteinase inhibitor 1 (150μM) antagonized the fibronectin matrix degradative action caused by all these drugs.
8.These results suggest that the formation of fibronectin matrix beneath the fibronblast is dynamic. Cytoskeleton organization, tyrosine kinase and serine-threonine kinases are all involved in the regulation of fibronectin fibrillogenesis. Protein kinase C potentiates and protein kinase A inhibits the assembly of fibronectin matrix.
Part II:
1.Numerous processes including secretion, gene expression and proliferation are controlled by hormones which act through the second messenger cAMP. Although cAMP was the first discovered second messenger of hormone action, much remains to be learned about its mode of action and the regulation of signaling pathways which utilize this second messenger.
2.Extracellular matrix (ECM) proteins such as fibronectin, laminin and collagen have been implicated in a wide variety of cellular properties which include cell adhesion, migration, differentiation and proliferation. The previous data of our laboratory showed that fibronectin and laminin markedly increased spontaneous ACh release via increasing PKA or PKC activity. The aim of the present study is to further analyze the modulation of protein kinase A activity in synaptic transmission by matrix proteins at developing motoneurons.
3.The cultures of spinal neurons and myotomal cells were prepared from 1-day-old Xenopus embryos. Spontaneous synaptic currents (SSCs) were recorded from innervated myocytes of natural synapses by whole-cell voltage-clamped recordings (Vh=-60~-65 mV).
4.Bath application of an adenylate cyclase activator forskolin (20 μM) resulted in significant enhancement of the SSC frequency in cultures grown on fibronectin substratum but not on laminin- or collagen-coated glass.
5.Bath application of a PKA activator DBcAMP (1mM) resulted in significant enhancement of the SSC frequency in cultures grown on fibronectin substratum but not on laminin- or collagen-coated glass.
6.Application of 3μM CGRP did not significantly affect the spontaneous ACh release in cultures grown on fibronectin substratum.
7.Bath application of a non-selective β agonist isoproterenol (10μM) resulted in significant enhancement of the SSC frequency in cultures grown on fibronectin substratum but not on laminin- or collagen-coated glass.
8.Bath application of a selective β2 agonist albuterol (10μM) resulted in significant enhancement of the SSC frequency in cultures grown on fibronectin substratum but not on laminin- or collagen-coated glass.
9.When cells were cultured on non-coated glasses, application of isoproterenol (10μM) or soluble fibronectin (6μg/ml) alone did not significantly affect the spontaneous ACh release. However, sequential application of soluble fibronectin and isoproterenol markedly increased the SSC frequency.
10.Bath application of BDNF (30 ng/ml), CNTF (150 ng/ml), GDNF (30 ng/ml) or NT-3 (50 ng/ml) was bath applied to 4 hr‘s cultures grown on fibronectin-coated glasses. After one day’s incubation, BDNF inhibited but CNTF, GDNF and NT-3 potentiated SSC enhancement in response to addition to DBcAMP.
11.In summary, these results suggest that fibronectin matrix protein potentiates the activation of PKA and may play an important role in regulating synaptic transmission at developing motoneuron.

目 錄
第一部分
中文摘要1
英文摘要3
緒論5
實驗材料與方法14
結果18
討論64
第二部分
中文摘要69
英文摘要72
緒論74
實驗材料與方法82
結果85
討論120
參考文獻128

Adams, J. C. and Watt, F. M. (1993). Regulation of development and differentiation by the extracellular matrix. Development 117, 1183-1198.
Akiyama, S. K., Yamada, S. S., Chen, W. T. and Yamada, K. M. (1989). Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J. Cell Biol. 109, 863-875.
Akiyama, S. K. (1996). Integrins in cell adhesion and signaling Hum. Cell 9, 181-186.
Alexander, C. M. and Werb, Z. (1989). Proteinases and extracellular matrix remodeling. Curr. Opin. Cell Biol. 1, 974-982.
Anderson, M. J., Cohen, M.W. and Zorychta, E. (1977). Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J. Physiol. (Lond) 268, 731-56.
Aota, S., Nagai, T., Olden, K., Akiyama, S. K. and Yamada, K. M. (1991). Fibronectin and integrins in cell adhesion and migration. Biochem. Soc. Trans. 19, 830-5.
Arnold, E. P. and Andrew, H. K. (1999). Fibroblasts and matrix proteins. Inflammation: Basic Principles and Clinical Correlates (third edition).
Aumailley, M. and Smyth, N. (1998).The role of laminins in basement membrane function. J. Anat. 193, 1-21.
Beck, K., Hunter, I. and Engel, J. (1990). Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 4, 148-60.
Brandon, E. P., Idzerda, R. L. and McKnight, G. S. (1997). PKA isoforms, neural pathways, and behaviour: making the connection. Curr. Opin. Neurobiol. 7, 397-403.
Burridge, K., Nuckolls, G., Otey, C., Pavalko, F. Simon, K. and Turner, C. (1990). Actin-membrane interaction in focal adhesions. Cell Diff. Dev. 32, 337-342.
Butt, E., Abel, K., Krieger, M., Palm, D., Hoppe, V., Hoppe, J. and Walter, U. (1994). cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 269, 14509-17.
Chen, B. M. and Grinnell, A. D. (1997). Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J. Neurosci. 17, 904-16.
Clark, E. A. and Brugge, J. S. (1995). Integrins and signal transduction pathways: the road taken. Science 268, 233-239.
D’souza, S. E., Ginsberg, M. H. and Plow, E. F. (1991). Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem. Sci. 16, 246-250.
Dzamba, B. J., Bultmann, H., Akiyama, S. K. and Peters, D. M. (1994). Substrate-specific binding of the amino terminus of fibronectin to an integrin complex in focal adhesions. J. Biol. Chem. 269, 19646-19652
Evers, J., Laser, M., Sun, Y. A., Xie, Z. P. and Poo, M. M. (1989). Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J. Neurosci. 9, 1523-39.
Fogerty, F. J., Akiyama, S. K., Yamada, K. M. and Mosher, D. F. (1990). Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J. Cell Biol. 111, 699-708.
Frisch, S. M. and Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619-626
Giancotti, F. G. and Ruoslahti, E. (1990). Elevated levels of the alpha 5 beta 1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60, 849-859.
Glass II, W. F. and Kreisberg, J. I. (1993). Regulation of integrin-mediated adhesion at focal contacts by cAMP. J. Cell Physiol. 157, 296-306.
Goberdhan, N. J., Edgecombe, M., Freedlander, E. and MacNeil, S. (1997). Extracellular matrix proteins induce changes in intracellular calcium and cyclic AMP signalling systems in cultured human keratinocytes. Burns. 23, 122-30.
Gomez , T. M. and Letourneau, P. C. (1994). Filopodia initiate choices made by sensory neuron growth cones at laminin/fibronectin borders in vitro. J. Neurosci. 14, 5959-72.
Grabham, P. W. and Goldberg, D. J. (1997). Nerve growth factor stimulates the accumulation of beta1 integrin at the tips of filopodia in the growth cones of sympathetic neurons. J. Neurosci. 17, 5455-65.
Guan, J. L. and Shalloway, D. (1992). Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358, 690-692.
Haas, T.A. and Plow, E.F. (1994) Integrin-ligand interactions: a year in review. Curr. Opin. Cell Biol. 6, 656-662.
Halvorson, M. J. and Coligan, J. E. (1995). Enhancement of VLA integrin receptor function on thymocytes by cAMP is dependent on the maturation stage of the thymocytes. J. Immunol. 155, 4567-74.
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85-100.
Harper, S. J., Walsh, F. S. and Doherty, P. (1993). Neurite outgrowth of spinal neurons on tissue sections of embryonic muscle is largely integrin dependent. Neurosci. Lett. 159, 202-6.
Haverstick, D. M. and Gray, L. S. (1992). Lymphocyte adhesion mediated by lymphocyte function-associated antigen-1. I. Long term augmentation by transient increases in intracellular cAMP. J. Immunol. 149, 389-96.
Hayman, E. G., Pierschbacher, M. D., Suzuki, S. and Ruoslahti, E. (1985). Vitronectin--a major cell attachment-promoting protein in fetal bovine serum. Exp. Cell Res. 160, 245-58.
Heino, J. (1993). Integrin-type extracellular matrix receptors in cancer and inflammation. Annal Med. 25, 335-342.
Henry, M. D. and Campbell, K. P. (1996). Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr. Opin. Cell Biol. 8, 625-31.
Heumann, R. (1994) Neurotrophin signaling. Curr. Opin. Neurobiol. 4, 668-79.
Hocking, D. C., Smith, R. K. and McKeown-Longo, P. J. (1996). A novel role for the integrin-binding III-10 module in fibronectin matrix assembly. J. Cell Biol. 133, 431-44.
Huang, C. C., Hsu, K. S. and Gean, P. W. (1996). Isoproterenol potentiates synaptic transmission primarily by enhancing presynaptic calcium influx via P- and/or Q-type calcium channels in the rat amygdala. J. Neurosci. 16, 1026-33.
Hughes, P. E., Diaz-Gonzalez, F., Leong, L., Wu, C., McDonald, J. A., Shattil, S. J. and Ginsberg, M. H. (1996). Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J. Biol. Chem. 271, 6571-4.
Hunter, D. D., Shah, V., Merlie, J. P. and Sanes, J. R. (1989). A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 229-34.
Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25.
Hynes, R. O. and Lander, A. D. (1992). Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68, 303-22.
Ip, N. Y. and Yancopoulos, G. D. (1996). The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu. Rev. Neurosci. 19, 491-515.
Jaken, S., Leach, K. and Klauck, T. (1989). Association of type 3 protein kinase C with focal contacts in rat embryo fibroblasts. J. Cell Biol. 109, 697-704.
Jing, S., Wen, D., Yu, Y., Holst, P. L., Luo, Y., Fang, M., Tamir, R., Antonio, L., Hu, Z., Cupples, R., Louis, J. C., Hu, S., Altrock, B. W. and Fox, G. M. (1996). GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85, 1113-24.
Kleiner, D. E. Jr. and Stetler-Stevenson, W. G. (1993). Structural biochemistry and activation of matrix metalloproteinases. Curr. Opin. Cell Biol. 5, 891-897.
Kolanus, W. and Seed, B. (1997). Integrins and inside-out signal transduction: converging signals from PKC and PIP3. Curr. Opin. Cell Biol. 9, 725-731.
Kornberg L., Earp, H. S., Parsons, J. T., Schaller, M. and Juliano, R. L. (1992). Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 267, 23439-23442.
Kuhn, T. B., Schmidt, M. F. and Kater SB. (1995). Laminin and fibronectin guideposts signal sustained but opposite effects to passing growth cones. Neuron 14, 275-85
Lamb, N. J. C., Fernandez, A., Conti, M. A., Adelstein, R., Glass, D. B., Welch, W. J. and Fermaisco, J. R. (1988). Regulation of actin microfilament integrity in living nonmuscle cells by the cAMP-dependent protein kinase and the myosin light chain kinase. J. Cell Biol. 106, 1955-1971.
Lauffenburger, D. A. and Horwitz, A. F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359-369.
Laurenza, A., Khandelwal, Y., De Souza, N. J., Rupp, R. H., Metzger, H. and Seamon, K. B. (1987). Stimulation of adenylate cyclase by water-soluble analogues of forskolin. Mol. Pharmacol. 32, 133-9.
Lochter, A. and Schachner, M. (1993) Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro. J. Neurosci. 13, 3986-4000.
Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudairaa, P. and Darnell, J. (1995) Molecular Cell Biology (third edition).
Lu, B., Fu, W. M., Greengard, P. and Poo, M. M. (1993). Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction. Nature 363, 76-9.
Martin, G. R. and Timpl, R. (1987). Laminin and other basement membrane components. Annu. Rev. Cell Biol. 3, 57-85.
Mecham, R. P. (1991). Receptors for laminin on mammalian cells. FASEB J. 5, 2538-46.
Meinkoth, J. L., Alberts, A. S., Went, W., Fantozzi, D., Taylor, S. S., Hagiwara, M., Montminy, M. and Feramisco, J. R. (1993) Signal transduction through the cAMP-dependent protein kinase. Mol. Cell. Biochem. 127/128, 179-86.
Meredith, J. E., Jr. Fazeli, B. and Schwartz, M. A. (1993). The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953-961.
Mohri, H. (1997). Interaction of fibronectin with integrin receptors: evidence by use of synthetic peptides. Peptides 18, 899-907.
Montanaro, F., Gee, S. H., Jacobson, C., Lindenbaum, M. H., Froehner, S. C. and Carbonetto, S. (1998). Laminin and alpha-dystroglycan mediate acetylcholine receptor aggregation via a MuSK-independent pathway. J. Neurosci. 18, 1250-60.
Movsesian, M. A. (1999). Beta-adrenergic receptor agonists and cyclic nucleotide phosphodiesterase inhibitors: shifting the focus from inotropy to cyclic adenosine monophosphate. J. Am. Coll. Cardiol. 34, 318-24.
Obermeier, A., Bradshaw, R. A., Seedorf, K., Choidas, A., Schlessinger, J. and Ullrich, A. (1994). Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLCγ. EMBO J. 13, 1585-90.
Oppenheim, R. W. (1996). Neurotrophic survival molecules for motoneurons: an embarrassment of riches. Neuron 17, 195-7.
Pollanen, J., Saksela, O., Salonen, E. M., Andreasen, P., Nielsen., Dano, K. and Vaheri, A. (1987). Distinct localizations of urokinase-type plasminogen activator and its type I inhibitor under cultured human fibroblasts and sarcoma cells. J. Cell Biol, 104, 1085-1096.
Potts, J. R. and Campbell, I. D. (1994). Fibronectin structure and assembly. Curr. Opin. Biol. 6, 648-655.
Quayle, J. M., Bonev, A. D., Brayden, J. E. and Nelson, M. T. (1994). Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J. Physiol. (Lond). 475, 9-13.
Richardson, A. and Parsons, T. (1996). A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 380, 538-40.
Richardson, A., Shannon, J. D., Adams, R. B., Schaller, M. D. and Parsons, J. (1997). Identification of integrin-stimulated sites of serine phosphorylation in FRNK, the separately expressed C-terminal domain of focal adhesion kinase: a potential role for protein kinase A. Biochem. J. 324, 141-9.
Rosales, C., O'Brien, V., Kornberg, L. and Juliano, R. (1995). Signal transduction by cell adhesion receptors. Biochim. Biophys. Acta 1242, 77-98.
Ruoslahti, E. and Pierschbacher, M. (1986). Arg-Gly-Asp: a versatile cell recognition signal. Cell 44, 517-518.
Ruoslahti, E. (1988) .Structure and biology of proteoglycans. Annu. Rev. Cell Biol. 4, 229-55.
Salim, S. Y., Dezaki, K., Tsuneki, H., Abdel-Zaher, A. O. and Kimura, I. (1998). Calcitonin gene-related peptide potentiates nicotinic acetylcholine receptor-operated slow Ca2+ mobilization at mouse muscle endplates. Br. J. Pharmacol. 125, 277-82.
Samuelsson, S. J., Luther, P. W., Pumplin, D. W. and Bloch R. J. (1993). Structures linking microfilament bundles to the membrane at focal contacts. J. Cell Biol. 122, 485-96.
Schmidt, C. E., Dai, J., Lauffenburger, D. A., Sheetz, M. P. and Horwitz, A. F. (1995). Integrin-cytoskeletal interactions in neuronal growth cones. J. Neurosci. 15, 3400-7.
Schmidt, C. E., Chen, T. and Lauffenburger, D. A. (1994). Simulation of integrin-cytoskeletal interactions in migrating fibroblasts. Biophys. J. 67, 461-74.
Schwartz, M. A. Schaller, M. D. and Ginsberg, M. H. (1995). Integrins: emerging paradigms of signal transduction. Ann. Rev. Cell Dev. Biol. 11, 549-599.
Schwarzbauer, J. E. and Sechler, J. L. (1999). Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr. Opin. Cell Biol. 11, 622-627
Sechler, J. L., Corbett, S. A. and Schwarzbauer, J. E. (1997). Modulatory roles for integrin activation and the synergy site of fibronectin during matrix assembly. J of surgic. Res. 69, 220-225..
Spatz, H. C. (1995). Posttranslation modification of protein kinase A. The link between short-term and long-term memeory. Behav. Brain. Res. 66, 79-84.
Spitzer, N. C. and Lamborghini, J. E. (1976). The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl. Acad. Sci. USA 73,1641-5.
Stahl, N., Farruggella, T. J., Boulton, T. G. Zhong, Z., Darnell, J. E. Jr. and Yancopoulos, G. D. (1995). Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267, 1349-53.
Staubli, U., Chun, D. and Lynch, G. (1998). Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 18, 3460-9.
Stephens, R. M., Loeb, D. M., Copeland, T. D., Pawson, T., Greene, L. A. and Kaplan, D. R. (1994). Trk receptors use redundant signal transduction pathways involving SHC and PLC-γ1 to mediate NGF responses. Neuron 12, 691-705.
Tabti, N. and Poo, M. M. (1991). Culturing spinal cord neurons and muscle cells from Xenopus embryos. In: Culturing Nerve Cells (Banker G, Goslin K eds), pp 137-154. Cambridge, MA: MIT press.
Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S. Buck, C.,. Horwitz, A. F. and Hynes, R. O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-82.
Trudeau, L. E., Fang, Y. and Haydon, P. G. (1998). Modulation of an early step in the secretory machinery in hippocampal nerve terminals. Proc. Natl. Acad. Sci. USA 95, 7163-8.
Turner, C. E., Paralko, F. M. and Burridge, K. (1989). The role of phosphorylation and limited proteolytic cleavage of talin and vinculin in the disruption of focal adhesion integrity. J. Biol. Chem. 264, 11938-11944.
Vassalli, J. D., Sappino, A. P. and Belin, D. (1991). The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067-1072.
Vuori, K. (1998). Integrin signaling: tyrosine phosphorylation events in focal adhesions. J. Mem. Biol. 165,191-9.
Wennerberg, K., Lohikangas, L., Gullberg, D., Pfaff, M., Johansson, S. and Fassler, R. (1996). Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly 1 integrin-dependent and -independent polymerization of fibronectin. J. Cell Biol. 132, 227-238.
Woods, A. and Couchman, J. R. (1992). Protein kinase C involvement in focal adhesion formation. J. Cell Sci. 101, 277-290.
Wu, C. (1997). Roles of integrins in fibronectin matrix assembly. Histol. Histopathol. 12, 233-240.
Wu, C., Bauer, J. S., Juliano, R. L. and McDonald, J. A. (1993). The alpha 5 beta 1 integrin fibronectin receptor, but not the alpha 5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly. J. Biol. Chem. 268, 21883-21888.
Wu, D. Y. and Goldberg, D. J. (1993). Regulated tyrosine phosphorylation at the tips of growth cone filopodia. J. Cell Biol. 123, 653-664.
Wu, C., Keivens, V. M., O'Toole, T. E., McDonald, J. A. and Ginsberg, M. H. (1995a). Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83, 715-24.
Wu, C., Chung, A. E. and McDonald, J. A. (1995b). A novel role for alpha 3 beta 1 integrins in extracellular matrix assembly. J.Cell Sci. 108 , 2511-23.
Wu, C., Hughes, P. E. and Ginsberg, M. H., McDonald JA. (1996). Identification of a new biological function for the integrin alpha v beta 3: initiation of fibronectin matrix assembly. Cell Adhesion Commun. 4, 149-58.
Wu-Wong, J. R. and Opgenorth, T. J. (1998). Endothelin and isoproterenol counter-regulate cAMP and mitogen-activated protein kinases. J. Cardiovasc. Pharmacol. 31 Suppl 1, S185-91.
Xie, Z. P. and Poo, M. M. (1986). Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc. Natl. Acad. Sci. USA 83, 7069-73.
Yamada, K. M. (1989). Fibronectins: structure, functions and receptors. Curr. Opin. Cell Biol. 1,956-63.
Yamada, K. M. (1997). Integrin signaling. Matrix Biology 16,137-41.
Young, S. H. and Poo, M. M. (1983). Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 305, 634-7.
Zhang, Q., Sakai, T., Nowlen, J., Hayashi, I., Fassler, R. and Mosher, D. F. (1999). Functional beta1-integrins release the suppression of fibronectin matrix assembly by vitronectin. J. Biol. Chem. 274, 368-75.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top