跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊佑
研究生(外文):Lin, Jiunn-Yow
論文名稱:利用高解析度融解曲線分析技術快速鑑定細菌性食物中毒病原菌
論文名稱(外文):Rapid Identification of Bacterial Food Poisoning Pathogens by High-Resolution Melting Curve Analysis
指導教授:藍清隆
指導教授(外文):Lan, Ching-Long
口試委員:侯藹玲陳文彬
口試委員(外文):Hour, Ai-LingChen, Wen-Ping
口試日期:2013-01-22
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生命科學系碩士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:食物中毒體外診斷高解析度融解曲線半巢式聚合酶鏈鎖反應核醣體DNA
外文關鍵詞:bacterial food poisoning pathogensin vitro diagnosticsribosomal DNAhemi-nested PCRhigh-resolution melting curveribosomal DNA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
食物中毒是全世界最常見的感染性疾病之一,其中細菌性食物中毒病原具有最多種類也最複雜,因此如何儘快釐清食物中毒病原細菌為重要的議題。傳統方法檢測整體流程曠日廢時,而隨著跨領域檢驗技術研發,能對細菌進行準確且快速的檢測,其中核酸檢測是最具潛力的檢測方式之一。本研究利用高解析度融解曲線(high-resolution melting curve, HRM)法研發對供試食物中毒病原菌(包括Bacillus屬、Staphylococcus屬、Escherichia屬、Salmonella屬、Shigella屬、Pseudomonas屬及Vibrio屬共7屬DNA樣本)快速檢測技術。自GenBank擷取各菌種的核醣體DNA(ribosomal DNA)序列進行多重序列排比(multiple sequence alignment),在rDNA的不同片段設計引子進行聚合酶鏈鎖反應(polymerase chain reaction),探討16S rDNA、ITS(internal transcribed spacer)擴增子進行HRM分析,並依據HRM剖面圖(HRM profile)判別種間、亞種菌株間的差異。再進一步以改良的半巢式PCR(hemi-nested PCR, hn-PCR)進行16S rDNA變異區的擴增與HRM分析,並依據HRM剖面圖歸群,結果顯示16S rDNA變異區的hn-PCR,可以大幅提升HRM微分曲線的解析度,進而能輕易分辨至少7種菌株,甚至可解析不同亞種菌株間的差異。此外,由鄰接法(neighbor-joing method)建立的16S rDNA序列為基礎的類源樹(phylogenetic tree),也驗證類源關係越相近的菌株,在HRM微分曲線剖面圖之波峰的位置及形狀也有越相近的趨勢。本研究並探討其適用範圍,以及未來構築鑑定平台的發展方向。
Foodborne illness is one of the most common infectious diseases worldwide. Among them, food poisoning syndromes caused by bacterial pathogens are known to be very diversified and complicated. Therefore, how to clarify food poisoning pathogens as soon as possible is an important issue. The conventional methods used for the diagnosis of bacterial food poisoning pathogens are very time-consuming. However, with the advance of cross-cutting diagnostic technology, many new tools are available for an accurate and rapid bacterial detection and diagnosis. Among them, nucleic acid-based detection and diagnosis is one of the most promising sectors in in vitro diagnostics. In this study, a high-resolution melting curve method (HRM) was employed for developing the detection and identification methods of the above- mentioned pathogens. Totally, 7 genera of DNA samples, including Bacillus spp., Staphylococcus spp., Escherichia spp., Salmonella spp., Shigella spp., Pseudomonas spp. and Vibrio spp. were used. The ribosomal DNA sequences of each species were retrieved from the GenBank and aligned, the primers for polymerase chain reaction (PCR) was subsequently designed. The HRM profiles of the 16S rDNA and ITS (internal transcribed spacer) amplicons were examined to characterize inter-species and inter-subspecies difference. The amplicons of the 16S rDNA variable regions were obtained lastly with the hn-PCR(hemi-nested PCR) protocol, and resolved then by the HRM analyses. The results have clearly demonstrated that the HRM profiles revealed by the aforementioned approach could differentiate at least 7 species of the 5 different genera. Moreover, it was capable of resolving the difference at the subspecies level. Additionally, the phylogenetic relationship reconstructed using the neighbor-joining method, based on the 16S rDNA sequences of the examined species, was also shown that the closer the phylogenetic relationship, the similar the HRM profile. The potential application and prospect of this study as well as the plausible approach to build an identification and diagnostic platform were addressed finally.
中文摘要(Chinese abstract) i
英文摘要(English abstract) ii
目錄 iv
圖目錄 vii
表目錄 x
壹、 緒論 1
一、 前言 1
二、 研究背景及文獻回顧 2
1. 台灣常見細菌性食物中毒病原 2
2. 選擇適合微生物分子檢測的生物標記 6
3. 快速檢測引發食物中毒病原菌的方法 8
4. 高解析度融解曲線分析法 10
5. 應用於DNA條碼分析上的聚合酶鏈鎖反應 11
三、 研究動機與目的 12
貳、 實驗材料與方法 14
一、 實驗藥品與儀器 14
二、 菌種與DNA樣本來源 15
三、 菌種純化與保存 17
四、 液態懸浮培養 18
五、 菌株基因體DNA萃取 18
六、 引子設計 18
七、 PCR測試條件 19
八、 瓊脂膠體電泳 20
九、 HRM分析 21
參、 實驗結果 22
一、 菌種培養及DNA萃取結果 22
二、 檢測食物中毒病原菌之16S序列 22
1. 利用16S序列之引子對7屬病原菌進行PCR初步檢測HRM曲線 22
三、 檢測食物中毒病原菌之16S-ITS序列 23
1. 利用5'-16S-ITS序列之引子對5屬病原菌進行PCR檢測HRM曲線 23
四、 檢測食物中毒病原菌之ITS序列 24
1. 利用16S-3'-ITS序列之引子對5屬病原菌進行PCR檢測HRM曲線 24
2. 比較5'-16S-ITS序列之引子與16S-3'-ITS序列之引子對5屬病原菌之HRM曲線分析 25
五、 改良食物中毒病原菌16S序列之檢測 26
1. 利用16S序列之引子對5屬病原菌進行16S保守區hemi-nested PCR檢測HRM曲線 26
2. 利用16S序列之引子對5屬病原菌進行16S變異區hemi-nested PCR檢測HRM曲線 27
3. 比較不同濃度16S序列之引子對5屬病原菌進行16S變異區hemi-nested PCR檢測HRM曲線 27
4. 比較16S序列之引子與16S-5'-ITS序列之引子對5屬病原菌進行PCR檢測HRM曲線及16S序列之引子對5屬病原菌進行16S變異區hemi-nested PCR檢測HRM曲線 29
5. 正常化16S序列之引子對5屬食物病原菌進行16S變異區hemi-nested PCR檢測HRM曲線 29
6. 利用16S序列與ITS序列之引子對4種病原菌進行16S變異區hemi-nested與ITS序列duplex PCR初步檢測HRM曲線 30
肆、 討論 32
一、 HRM融解曲線圖之檢測程序 32
二、 PCR擴增序列長度對HRM解析度的影響 33
三、 Nested PCR引子間的競爭關係 35
四、 對可疑菌株及偽陽性條帶進行定序確認 37
五、 探討HRM對混雜菌株的分析能力 39
伍、 結論及未來展望 40
陸、 參考文獻 42
柒、 圖 53
捌、 表 83
玖、 附錄 94
附錄一、實驗流程圖 94
附錄二、利用HRM分析不同PCR擴增子設計流程示意圖 95

吳秀英、蔡淑貞、戚祖沅、宋承叡、許婉貞、許朝凱、鄭維智。2011。99年食品中毒發生與防治年報。行政院衛生署食品藥物管理局p.62。
呂康祖、謝詠筌、劉芳淑、羅吉方、林哲輝。2010。黃芩藥材及其製劑Nested PCR-DNA定序鑑定方法之建立。食品藥物研究年報1: 264-270。
林建汝。2006。多重引子PCR與PCR增殖技術應用於病原菌快速檢測可行性之探討。國立臺灣海洋大學食品科學所碩士論文。
連建絡。2006。茶樹枝枯病菌(Macrophoma theicola Petch) (Botryosphaeria sp.)分子歧異度分析。私立輔仁大學生命科學研究所碩士論文。
曾浩洋、蔣育錚。2006。食品病原菌檢測用生物晶片之發展與應用。農業生技產業季刊7: 51-57。
詹宜兒,秦慶瑤著。2009。體外診斷(IVD)產業發展趨勢與新興市場之機會。財團法人生物技術開發中心,台北市。
楊智欽。2012。利用高解析度熔解曲線分析技術鑑定致敏真菌的研究。私立輔仁大學生命科學研究所碩士論文。
劉麗雲。2011。食品衛生與安全。秀威資訊科技股份有限公司,台北市。
Anderson, T., K. Beynon and D. Murdoch. 2003. Comparison of real‐time PCR and conventional hemi‐nested PCR for the detection of Bordetella pertussis in nasopharyngeal samples. Clinical Microbiology and Infection 9: 746-749.
Anne-Leila, M., F. Carolyn S, P. Christine, F. Claude, C. Isabelle, L. Jean and A. Sébastien. 2012. High resolution melting analysis for fast and cheap polymorphism screening of marine populations. Protocol Exchange doi: 10.1038/ protex.2012.015.
Antón, A. I., A. J. Martínez-Murcia and F. Rodríguez-Valera. 1998. Sequence diversity in the 16S–23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli ECOR collection. Journal of Molecular Evolution 47: 62-72.
Arndt, J. W., M. J. Jacobson, E. E. Abola, C. M. Forsyth, W. H. Tepp, J. D. Marks, E. A. Johnson and R. C. Stevens. 2006. A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. Journal of Molecular Biology 362: 733-742.
Bietz, M. J. and C. P. Lee. 2009. Collaboration in metagenomics: Sequence databases and the organization of scientific work. European Conference on Computer Supported Cooperative Work 2009: 243-262.
Blackburn, G. M., M. J. Gait, D. Loakes and D. Williams. 2006. Nucleic Acids in Chemistry and Biology, 3rd Ed. Royal Society of Chemistry 9: 353-354.
Blake, P. A., M. H. Merson, R. E. Weaver, D. G. Hollis and P. C. Heublein. 1979. Disease caused by a marine Vibrio — Clinical characteristics and epidemiology. New England Journal of Medicine 300: 1-5.
Bogomolnaya, L. M., C. A. Santiviago, H. J. Yang, A. J. Baumler and H. L. Andrews‐Polymenis. 2008. ‘Form variation’of the O12 antigen is critical for persistence of Salmonella typhimurium in the murine intestine. Molecular Microbiology 70: 1105-1119.
Bouchet, V., H. Huot and R. Goldstein. 2008. Molecular genetic basis of ribotyping. Clinical Microbiology Reviews 21: 262-273.
Boxrud, D. 2010. Advances in subtyping methods of foodborne disease pathogens. Current Opinion in Biotechnology 21: 137-141.
Chen, C. Y., K. M. Wu, Y. C. Chang, C. H. Chang, H. C. Tsai, T. L. Liao, Y. M. Liu, H. J. Chen, A. B. T. Shen and J. C. Li. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Research 13: 2577-2587.
Chiu, T. H., T. R. Chen, W. Z. Hwang and H. Y. Tsen. 2005. Sequencing of an internal transcribed spacer region of 16S–23S rRNA gene and designing of PCR primers for the detection of Salmonella spp. in food. International Journal of Food Microbiology 97: 259-265.
Christen, R. 2008. Global sequencing: a review of current molecular data and new methods available to assess microbial diversity. Microbes and Environments 23: 253-268.
Cousins, M. M., S. S. Ou, M. J. Wawer, S. Munshaw, D. Swan, C. A. Magaret, C. E. Mullis, D. Serwadda, S. F. Porcella and R. H. Gray. 2012. Comparison of a high-resolution melting assay to next-generation sequencing for analysis of HIV diversity. Journal of Clinical Microbiology 50: 3054-3059.
Doyle, M. P., L. R. Beuchat and T. J. Montville. 2001. Food Microbiology: Fundamentals and Frontiers, 3rd Ed. American Society for Microbiology Press, Washington, D.C., USA
Dreibelbis, S. B. 1999. Evaluation of Five ATP Bioluminescence Hygiene Monitoring Systems in a Commercial Food Processing Facility, Kansas State University, Manhattan, Kansas, USA
Er, T. K. and J. G. Chang. 2012. High-resolution melting: Applications in genetic disorders. Clinica Chimica Acta 414:197-201.
Fitzgerald, J. R., S. R. Monday, T. J. Foster, G. A. Bohach, P. J. Hartigan, W. J. Meaney and C. J. Smyth. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. Journal of Bacteriology 183: 63-70.
Foley, S. L., A. M. Lynne and R. Nayak. 2009. Molecular typing methodologies for microbial source tracking and epidemiological investigations of gram negative bacterial foodborne pathogens. Infection, Genetics, and Evolution 9: 430-440.
Fukushima, H., J. Kawase, Y. Etoh, K. Sugama, S. Yashiro, N. Iida and K. Yamaguchi. 2010. Simultaneous screening of 24 target genes of foodborne pathogens in 35 foodborne outbreaks using multiplex real-time SYBR Green PCR analysis. International Journal of Microbiology 2010;2010. pii: 864817 doi: 10.1155/2010/864817. E pub 2010 sep 28.
Galán, J. E. and R. Curtiss. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proceedings of the National Academy of Sciences, USA 86: 6383-6387.
Galan, J. E., C. Ginocchio and P. Costeas. 1992. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. Journal of Bacteriology 174: 4338-4349.
Garritano, S., F. Gemignani, C. Voegele, T. Nguyen-Dumont, F. Le Calvez-Kelm, D. De Silva, F. Lesueur, S. Landi and S. V. Tavtigian. 2009. Determining the effectiveness of high resolution melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BioMed Central Genetics 10:5 doi: 10.1186/1471-2156-10-5
Gianninò, V., M. Santagati, G. Guardo, C. Cascone, G. Rappazzo and S. Stefani. 2003. Conservation of the mosaic structure of the four internal transcribed spacers and localisation of the rrn operons on the Streptococcus pneumoniae genome. Federation of European Microbiological Societies Microbiology Letters 223: 245-252.
Gulig, P. A., A. L. Caldwell and V. A. Chiodo. 2006. Identification, genetic analysis and DNA sequence of a 7.8‐kb virulence region of the Salmonella typhimurium virulence plasmid. Molecular Microbiology 6: 1395-1411.
Gulig, P. A. and T. J. Doyle. 1993. The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice. Infection and Immunity 61: 504-511.
Guttmann, T., A. Vitek and L. Pivec. 1977. High resolution thermal denaturation of mammalian DNAs. Nucleic Acids Research 4: 285-297.
Hale, T. L. 1991. Genetic basis of virulence in Shigella species. Microbiology and Molecular Biology Reviews 55: 206-224.
Han, C. S., G. Xie, J. F. Challacombe, M. R. Altherr, S. S. Bhotika, D. Bruce, C. S. Campbell, M. L. Campbell, J. Chen and O. Chertkov. 2006. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. Journal of Bacteriology 188: 3382-3390.
Handelsman, J., M. R. Rondon, S. F. Brady, J. Clardy and R. M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry and Biology 5: R245-R249.
Harrington, S. M., E. G. Dudley and J. P. Nataro. 2005. Pathogenesis of enteroaggregative Escherichia coli infection. Federation of European Microbiological Societies Microbiology Letters 254: 12-18.
Heidelberg, J. F., J. A. Eisen, W. C. Nelson, R. A. Clayton, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, L. Umayam, S. R. Gill, K. E. Nelson, T. D. Read, H. Tettelin, D. Richardson, M. D. Ermolaeva, J. Vamathevan, S. Bass, H. Qin, I. Dragoi, P. Sellers, L. McDonald, T. Utterback, R. D. Fleishmann, W. C. Nierman, O. White, S. L. Salzberg, H. O. Smith, R. R. Colwell, J. J. Mekalanos, J. C. Venter and C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477-483.
Hensel, M., J. E. Shea, A. J. Bäumler, C. Gleeson, F. Blattner and D. W. Holden. 1997. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. Journal of Bacteriology 179: 1105-1111.
Hensel, M., J. E. Shea, C. Gleeson, M. D. Jones, E. Dalton and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400-403.
Hill, K., T. Smith, C. Helma, L. Ticknor, B. Foley, R. Svensson, J. Brown, E. Johnson, L. Smith and R. Okinaka. 2007. Genetic diversity among botulinum neurotoxin-producing clostridial strains. Journal of Bacteriology 189: 818-832.
Holmberg, S. D. and P. A. Blake. 1984. Staphylococcal food poisoning in the United States. Journal of the American Medical Association 251: 487-489.
Hutson, R., D. Thompson and M. Collins. 1993. Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. Federation of European Microbiological Societies Microbiology Letters 108: 103-110.
Hutson, R., D. Thompson, P. Lawson, R. Schocken-Itturino, E. Böttger and M. Collins. 1993. Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie van Leeuwenhoek 64: 273-283.
Ihmels, H. and D. Otto. 2005. Intercalation of organic dye molecules into double-stranded DNA--general principles and recent developments. Topic in Current Chemistry 258: 161-204.
Iteman, I., R. Rippka, N. T. de Marsac and M. Herdman. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146: 1275-1286.
Kaeberlein, T., K. Lewis and S. S. Epstein. 2002. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296: 1127-1129.
Kong, H. H., J. Oh, C. Deming, S. Conlan, E. A. Grice, M. A. Beatson, E. Nomicos, E. C. Polley, H. D. Komarow, P. R. Murray, M. L. Turner and J. A. Segre. 2012. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research 22: 850-859.
Li, Y. D., Z. Z. Chu, X. G. Liu, H. C. Jing, Y. G. Liu and D. Y. Hao. 2010. A cost‐effective high‐resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. Journal of Integrative Plant Biology 52: 1036-1042.
Lilliebridge, R. A., S. Y. C. Tong, P. M. Giffard and D. C. Holt. 2011. The Utility of High-Resolution Melting Analysis of SNP Nucleated PCR Amplicons—An MLST Based Staphylococcus aureus Typing Scheme. Plos one 2011, 6(6): e19749.
Lindsay, J. A. (ed.) 2008. Staphylococcus: Molecular Genetics, Caister Academic Press, Norfolk, UK. p.50.
Lindsay, J. A. and M. T. Holden. 2006. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Functional and Integrative Genomics 6: 186-201.
Lindsay, J. A., A. Ruzin, H. F. Ross, N. Kurepina and R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Molecular Microbiology 29: 527-543.
Mandal, P., A. Biswas, K. Choi and U. Pal. 2011. Methods for rapid detection of foodborne pathogens: an overview. American Journal of Food Technology 6: 87-102.
Monis, P. T., S. Giglio and C. P. Saint. 2005. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Analytical Biochemistry 340: 24-34.
Montgomery, J., C. T. Wittwer, R. Palais and L. Zhou. 2007. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nature Protocols 2: 59-66.
Murphy, N. M. 2009. The application of molecular techniques for the rapid and sensitive detection of gastrointestinal pathogens directly in food, ph.D. dissertation, University of Greenwich.
Naughton, L. M., S. L. Blumerman, M. Carlberg and E. F. Boyd. 2009. Osmoadaptation among Vibrio species and unique genomic features and physiological responses of Vibrio parahaemolyticus. Applied and Environmental Microbiology 75: 2802-2810.
Noller, A. C., M. C. McEllistrem, A. G. F. Pacheco, D. J. Boxrud and L. H. Harrison. 2003. Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157: H7 isolates. Journal of Clinical Microbiology 41: 5389-5397.
Qin, J., R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez and T. Yamada. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65.
Qiu, X. Y., R. A. Hurt, L. Y. Wu, C. H. Chen, J. M. Tiedje and J. Z. Zhou. 2004. Detection and quantification of copper-denitrifying bacteria by quantitative competitive PCR. Journal of Microbiological Methods 59: 199-210.
Rajilić-Stojanović, M. 2007. Diversity of the human gastrointestinal microbiota: novel perspectives from high throughput analyses, ph.D. thesis, Wageningen Universiteit.
Reed, G. H. and C. T. Wittwer. 2004. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clinical Chemistry. 50: 1748-1754.
Reed, G. H., J. O. Kent and C. T. Wittwer. 2007. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics. 8: 597-608.
Reen, F., E. Boyd, S. Porwollik, B. Murphy, D. Gilroy, S. Fanning and M. McClelland. 2005. Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a Salmonella microarray. Applied and Environmental Microbiology 71: 1616-1625.
Reen, F. J., S. Almagro-Moreno, D. Ussery and E. F. Boyd. 2006. The genomic code: inferring Vibrionaceae niche specialization. Nature Reviews Microbiology 4: 697-704.
Sang, F. and J. Ren. 2006. Capillary electrophoresis of double‐stranded DNA fragments using a new fluorescence intercalating dye EvaGreen. Journal of Separation Science 29: 1275-1280.
Scarano, C., S. Virdis, F. Cossu, R. Frongia, E. P. De Santis and A. M. Cosseddu. 2009. The pattern of toxin genes and expression of diarrheal enterotoxins in Bacillus thuringiensis strains isolated from commercial bioinsecticides. Veterinary Research Communications 33 (Suppl 1): 257-260.
Schloss, P. D. and J. Handelsman. 2003. Biotechnological prospects from metagenomics. Current Opinion in Biotechnology 14: 303-310.
Schloss, P. D. and J. Handelsman. 2004. Status of the microbial census. Microbiology and Molecular Biology Reviews 68: 686-691.
Shiga, K. 1898. Ueber den Erreger der dysenterie in Japan. Vorlaufige Mitteilung Zentralbal Bakteriol Microbiol Hyg 23: 599-600.
Sonenshein, A. L., J. A. Hoch and R. Losick. 1993. Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, American Society for Microbiology Press, Washington, D.C., USA.
Sudagidan, M., A. F. Yenidunya and H. Gunes. 2005. Identification of staphylococci by 16S internal transcribed spacer rRNA gene restriction fragment length polymorphism. Journal of Medical Microbiology 54: 823-826.
Swanson, K., F. Busta, E. Peterson and M. Johnson. 1992. Colony count methods. In Compendium of Methods for the Microbiological Examination by Foods,3rd Ed. (C. Vanderzant and D.F. Splittsoesser, eds.), pp. 75-95. American Public Health Association, Washington, D.C., USA..
Thompson, F. L., T. Iida and J. Swings. 2004. Biodiversity of vibrios. Microbiology and Molecular Biology Reviews 68: 403-431
Tringe, S. G. and E. M. Rubin. 2005. Metagenomics: DNA sequencing of environmental samples. Nature Reviews Genetics 6: 805-814.
Verghese, B., N. D. Schwalm III, E. G. Dudley and S. J. Knabel. 2012. A combined multi-virulence-locus sequence typing and Staphylococcal Cassette Chromosome mec typing scheme possesses enhanced discriminatory power for genotyping MRSA. Infection, Genetics and Evolution 12:1816-21.
Vernikos, G. S. and J. Parkhill. 2006. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22: 2196-2203.
Wang, S. J., D. B. Yeh and C. I. Wei. 2009. Specific PCR primers for the identification of Salmonella enterica serovar enteritidis in chicken-related samples. Journal of Food and Drug Analysis 17: 183-189.
Wiedmann, M., W. Zhang. 2011. Genomics of Foodborne Bacterial Pathogens. Springer, New York, USA.
Wieneke, A., D. Roberts and R. Gilbert. 1993. Staphylococcal food poisoning in the United Kingdom, 1969-90. Epidemiology and Infection 110: 519-531.
Wittwer, C. T., G. H. Reed, C. N. Gundry, J. G. Vandersteen and R. J. Pryor. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry 49: 853-860.
Woese, C. R. 1987. Bacterial evolution. Microbiological Reviews. 51: 221-271.
Yarwood, J. M., J. K. McCormick, M. L. Paustian, P. M. Orwin, V. Kapur and P. M. Schlievert. 2002. Characterization and expression analysis of Staphylococcus aureus pathogenicity Island 3. Journal of Biological Chemistry 277: 13138-13147.
Yeung, P. S. and K. J. Boor. 2004. Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathogens and Disease. 1: 74-88.
Yuan, J., M. Haroon, D. A. Lightfoot, Y. Pelletier, Q. Liu and X. Q. Li. 2009. A high-resolution melting approach for analyzing allelic expression dynamics. Current Issues in Molecular Biology 11. Epub 2009 Feb 2.
Zhou, L., L. Wang, R. Palais, R. Pryor and C. T. Wittwer. 2005. High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clinical Chemistry 51: 1770-1777.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top