跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃國財
研究生(外文):Guo-Tsai Huang
論文名稱:斜交指叉式換能器在次微米級薄膜材料性質量測上之應用
論文名稱(外文):Evaluation of Material Properties of Sub-Micrometer Thin Films Using Slanted Finger Interdigital Transducers
指導教授:吳政忠
指導教授(外文):Tsung-Tsong Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:88
中文關鍵詞:薄膜彈性性質薄膜感測器斜交指叉式換能器表面波頻散曲線耦合模型理論表面波頻譜分析法微機電
外文關鍵詞:Elastic properties of thin filmThin film SAW sensorSFITdispersion of SAWCOM modelSpectral analysis of surface wavesMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
Accurate monitoring of the thickness and elastic properties of thin films with thickness in the sub-micrometer range is very important in the area of N/MEMS fabrication. In this thesis, we utilize a RF surface acoustic wave (SAW) device to measure the dispersion of SAW in a thin film deposited layered substrate first, and then, determine the elastic properties of the thin film inversely through an optimization algorithm.
Firstly, we analyze the dispersion of SAW in a SiO2/YZ-LiNbO3 layered specimen and serve as the forward solution of the inverse evaluation. Secondly, a novel design of interdigital transducer pairs was proposed to measure the dispersion of SAW in such a layered specimen. To increase the bandwidth of the SAW device, slanted finger interdigital transducer (SFIT) was employed to generate wide band SAW signals. The SFIT was designed by using the coupling of modes method to ensure the best frequency response. Sub-micrometer thickness SiO2 thin films were deposited on the piezoelectric YZ-LiNbO3 substrate via the PECVD process. Pairs of the SFITs were then fabricated on the substrate. A network analyzer was used to measure the frequency response of the SFIT. The frequency responses were then processed using the spectral analysis to obtain the dispersion of SAW in such a layered specimen. With the forward solution and measured dispersion of the thin film deposited layered specimen, the elastic properties of the SiO2 layer can be reconstructed through the using of the simplex algorithm.
Result of the inversion shows that the elastic properties of the sub-micrometer thin SiO2 film can be determined successfully. It is worth noting that results of this study can be employed to design an in-situ thin film thickness monitoring SAW sensor.
Accurate monitoring of the thickness and elastic properties of thin films with thickness in the sub-micrometer range is very important in the area of N/MEMS fabrication. In this thesis, we utilize a RF surface acoustic wave (SAW) device to measure the dispersion of SAW in a thin film deposited layered substrate first, and then, determine the elastic properties of the thin film inversely through an optimization algorithm.
Firstly, we analyze the dispersion of SAW in a SiO2/YZ-LiNbO3 layered specimen and serve as the forward solution of the inverse evaluation. Secondly, a novel design of interdigital transducer pairs was proposed to measure the dispersion of SAW in such a layered specimen. To increase the bandwidth of the SAW device, slanted finger interdigital transducer (SFIT) was employed to generate wide band SAW signals. The SFIT was designed by using the coupling of modes method to ensure the best frequency response. Sub-micrometer thickness SiO2 thin films were deposited on the piezoelectric YZ-LiNbO3 substrate via the PECVD process. Pairs of the SFITs were then fabricated on the substrate. A network analyzer was used to measure the frequency response of the SFIT. The frequency responses were then processed using the spectral analysis to obtain the dispersion of SAW in such a layered specimen. With the forward solution and measured dispersion of the thin film deposited layered specimen, the elastic properties of the SiO2 layer can be reconstructed through the using of the simplex algorithm.
Result of the inversion shows that the elastic properties of the sub-micrometer thin SiO2 film can be determined successfully. It is worth noting that results of this study can be employed to design an in-situ thin film thickness monitoring SAW sensor.
Acknowledgements I
Abstract II
List of Notations III
Table of Contents VIII
List of Figures X
List of Tables XII
Chapter 1 Introduction 1
1-1 Research Motive…………………………………………………………. 1
1-2 Literature Review 2
1-3 Content of the Chapters 4
Chapter 2 Dispersion of SAW in Layered Piezoelectric Medium 6
2-1 Surface Acoustic Wave in a Layered Piezoelectric Medium 6
2-2 Impedance Tensor and Reflection Coefficient 12
2-3 Dispersion Equation 16
2-3.1 Half Space 16
2-3.2 Layered Structure 18
2-3.3 Effect of Thin Metal Layer on SAW Propagation 21
2-4 Dispersion of SAW in SiO2/YZ-LiNbO3 Layered Specimen 23
Chapter 3 Design and Fabrication of a Thin Film SAW Sensor 28
3-1 Design of a Thin Film SAW Sensor 28
3-2 Coupling-of-Mode Model Formulation 30
3-3 Design of SFIT SAW Devices 36
3-4 Fabrication of a Thin film SAW Sensor 37
Chapter 4 Measurement Results 57
4-1 Spectral Analysis of Surface Waves 57
4-2 Error Function and Simplex Method 59
4-3 Experimental Measurement 60
4-4 Inversion Results 62
4-4.1 Inversion of C11 and C44 of a thin SiO2 film 62
4-4.2 Inversion of ρ, C11 and C44 of a thin SiO2 film 63
4-4.3 Numerical Simulation of the Inversion Process of a thin SiO2 film 66
Chapter 5 Conclusions 83
References 85
1. Don, E. B., and Roderic, K. S., “Nondestructive Evaluation,” McGraw-Hill Book Co.
2. Viktorov, I.A., “Rayleigh and Lamb Waves,” Physical Theory and Application (Plenum, New York), 1967.
3. Hirao, M., Sotani, Y., Takami, K., and Fukuoka, H., “Rayleigh Wave Propagation in a Solid with a cold-Worked Surface Layer,” J. of Nondestructive Evalution, Vol. 2, 1981, pp.43-49.
4. Chai, J.-F., and Wu, T.-T., (1994) “Determinations of Anisotropic Elastic Constants Using Laser Generated Surface Waves,” J. Acoust. Soc. Am., 95(6), 3232-3241.
5. Wu, T. T., and Chai, J. F., (1994) “Propagation of Surface Waves in Anisotropic Solids: Theoretical Calculation and Experiment,'''' Ultrasonics, 32(1), 21-29.
6. Wu, T. T., and Chen, Y. C., (1996) “Dispersion of Laser Generated Surface Waves in an Epoxy-Bonded Layered Medium,” Ultrasonics, 34, 793-799.
7. Wu, T. T., and Liu, Y. H., (1999) “Inverse Analyses of thickness and elastic properties of a bonding layer using Laser Generated Surface Waves,” Ultrasonics, 37, 23-30.
8. Hickernell, T.S., Fliegel, F.M. and Hickernell, F.S., “The Elastic Properties of Thin-Film Silicon Nitride,” Proc. 1990 IEEE Ultrasonics Symp., 1990, pp. 445-448.
9. Hines, J.H., Malocha, D.C., Sundaram K.B., Casey, K.J. and Lee, K.R., “Deposition Parameter Studies and Surface Acoustic Wave Characterization of PECVD Silicon Nitride Films on Lithium Niobate,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 42(3), 1995, pp. 397-403.
10. Hickernell, F.S. and Hickernell, T.S., “The Acoustic Properties of PECVD Thin-Film Silicon Carbide,” Proc. 1993 IEEE Ultrasonics Symp., 1993, pp. 273-275.
11. Liaw, H.M., Cronin, W. and Hickernell, F.S., “The SAW Characteristics of Sputtered Aluminum Nitride on Silicon,” Proc. 1993 IEEE Ultrasonics Symp., 1993, pp. 267-271.
12. Hickernell, F.S., Hickernell, T.S. and Liaw, H.M., “The Characterization of PECVD Thin-Film TEOS Glass on Gallium Arsenide Using SAW Techniques,” Proc. 1994 IEEE Ultrasonics Symp., 1994, pp. 381-384.
13. Hickernell, F.S., “Measurement techniques for Evaluating piezoelectric Thin Films,” Proc. 1996 IEEE Ultrasonics Symp., 1996, pp. 235-242.
14. Didenko, I.S., Hickernell, F.S. and Naumenko, N.F., “The Experimental and Theoretical Characterization of The SAW Propagation Properties for Zinc Oxide Films on Silicon Carbide,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 47 (1), 2000, pp. 179-187.
15. Hickernell, F.S., “The Experimental SAW Propagation Characteristics of an Ion Assisted Deposited Boron Nitride Film on ST Quartz,” Proc. 2001 IEEE Ultrasonics Symp., 2001, pp. 175-178.
16. Hyodo, T., Yamanouchi, K. and Shibayama, K. (1968), “The Wide Band Excitation of Elastic Surface Wave Using the Interdigital Electrodes with Variable Pitches,” Pro. Acoustic Society of Japan 1968 Autumn Annual Meeting, 3-1-14, Nov. pp. 193~194 (in Japanese).
17. Daniel, M. R. and de Klerk, J. (1973), “Acoustic Radiation Measurements and Calculations for Three Surface Wave Filter Designs,” Proc. IEEE Ultra. Symposium, pp. 449~455.
18. Naraine, J. J. and Campbell, C. K. (1983), “Wide Band Linear Phase SAW Filter Using Apodized Slanted Finger Transducers,” Proc. IEEE Ultra. Symposium, pp. 113~116.
19. Campbell, C. K. (1998), “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” San Diego, Academic Press.
20. Saw, C. B. and Campbell, C. K. (1987), “Improved Design of Single-Phase Unidirectional Transducers for Low-Loss SAW Filters,” Proc. IEEE Ultra. Symposium, pp. 169~172.
21. Balashov, S. M. and Baek, K. H. (2000), “Optimal Design of Wide Band Low Loss SAW Filters, Using Slanted Interdigital Transducers,” Proc. IEEE Ultra. Symposium.
22. Stroh, A. N., (1962) “Steady State Problems in Anisotropic Elasticity,” J. Math. and Phys., 41, 77-103.
23. Marun, A., (1990) “Application of the Stroh Formalism to Selected Static and Dynamic Problems in Two-Dimensional Anisotropic Elasticity,” Ph. D. Thesis, Stanford University, Stanford, California, USA.
24. Achenbach, J. D., (1973) Wave Propagation in Elastic Solids, North-Holland, Amsterdam, Holland.
25. Auld, B.A., (1973) Acoustic Fields and Waves in Solids, vol. 1, Wiley Interscience, New York, New York.
26. Braga, M. B., (1990) “Wave propagation in anisotropic layered composites,” Ph. D. dissertation, Stanford University, Stanford, California, USA.
27. Honein, B., Braga, A. M. B., Barbone, P. and Herrmann, G. (1991), “Wave Propagation in Piezoelectric Layered Media with Some Applications,” J. Intelligent Material Systems and Structures, 2(4), pp.542~557.
28. T.-T. Wu, Y.-Y. Chen, “Exact Analysis of Dispersive SAW Devices on ZnO/Diamond/Si-Layered Structures,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 49 (1), 2002, pp. 142-149.
29. T.-T. Wu, Y.-Y. Chen, “Analysis of Surface Acoustic waves in Layered Piezoelectric Media and its Applications to the Design of SAW Devices,” The Chinese Journal of Mechnics —Series A, Vol. 19 (1), 2003, pp. 225-232.
30. Abbott, B. P. (1989), “A Coupling-of-Modes Model for SAW Transducers With Arbitrary Reflectivity Weighting,” Ph. D. dissertation, the Department of Electrical Engineering at the University of Central Florida Orlando, Florida.
31. Abbott, B. P. (1991), “A Derivation of the Coupling-of-Modes Parameters Based on the Scattering Analysis of SAW Transducers and Gratings,” Proc. IEEE Ultra. Symposium, pp. 5~10.
32. Abbott, B. P., Hartmann, C. S. and Malocha, D. C. (1992), “Transduction Magnitude and Phase for COM Modeling of SAW Devices,” IEEE Transactions on Ultrasonics, Ferroelectics, and Freq. Contr., vol. 39, Jan., pp. 54~60.
33. Lin, C.-M., (2003) “Analysis of RF Wide Band Layered SAW Filter Using Slanted Finger Interdigital Transducer,” M.S. Thesis, National Taiwan University, Taiwan.
34. Campbell, C. K., Ye, Y. and Sferrazza PaPa, J. J. (1982), “Wide-Band Linear Phase SAW Filter Design Using Slanted Transducer Fingers,” IEEE Transactions on Sonics and Ultrasonics, vol. SU-29, NO. 6, July, pp. 224~228.
35. Abbott, B. P., Hartmann, C. S. and Malocha, D. C. (1989), “A Coupling-of-Modes Analysis of Chirped Transducers Containing Reflective Electrode Geometries,” Proc. IEEE Ultra. Symposium, pp. 129 ~134.
36. Morgan, D. P. (1985), “Surface-Wave Devices for Signal Processing,” New York, Elsevier.
37. Nazarian, S., and M., Desai, R. (1992), “Automated Surface Wave Method: Field Testing,” Journal of Geotechnical Engineering, 119(7), 1094-1111.
38. Nelder, J. A., and Mead, R., (1965) “A Simplex Method for Function Minimization,” Computer Journal, 7, 308-313.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王振德(民74)。回歸主流其發展、涵意及相關的問題。特殊教育季刊,17,1-7。
2. 王麗美、張蓓莉(民83)。國中聽障學生福利需求之研究以台北市、縣為例。特殊教育研究學刊,10,229-256。
3. 王天苗(民84)。心智發展障礙幼兒家庭支援實施成效及其相關問題之研究。特殊教育研究學刊,12,75-103。
4. 王天苗(民90)。運用教學支援建立融合教育的實施模式:以一公立幼稚園的經驗為例。特殊教育研究學刊,21,27-51。
5. 李真賢、邱英秋、蔡美良、梁鈞洗、林思雄(民77)。國小普通班教師對聽障教育的認識與態度研究。特殊教育季刊,29,16-21。
6. 何華國(民89)。澳洲特殊學生之融合教育。嘉義大學學報(原嘉義技術學院學報),69,161-181。
7. 何珮菁(民89)。淺析資源教室的學校行政支援服務。特教園丁,16(2),1-6。
8. 吳武典(民83)。我國身心障礙兒童教育安置之檢討。師大學報,39,134-181。
9. 吳武典(民87)。教育改革與特殊教育。教育資料集刊,23,197-220。
10. 吳昆壽(民87)。融合教育之省思。特教新知通訊,5(7),1-4。
11. 吳武典、王華沛(民88)。加強身心障礙者輔助科技建設。特殊教育季刊,72,1-9。
12. 邢敏華(民90)。融合教育趨勢下聽覺障礙學生的教育問題探討。特教園丁,16(4),46-50。
13. 林淑玟(民90)。e世代的「無障礙」觀。特殊教育季刊,78,8-16。
14. 林寶貴(民85)。聽障學生接受人工電子耳植入術的現況及意見調查研究。特殊教育研究學刊,21,1-26。
15. 邱上真(民90)。普通班教師對特殊需求學生之因應措施、所面對之困境以及所需之支持系統。特殊教育研究學刊,21,1-26。