跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子詠
研究生(外文):Tzu-Yung Lin
論文名稱:緊迫對鯉魚血液及造血組織鋅濃度之影響及其生理意義
論文名稱(外文):Effects of stress on zinc concentration in the blood and hematopoietic tissues of common carp Cyprinus carpio and its physiological meaning
指導教授:鄭 森 雄 博士
指導教授(外文):Sen-Shyong Jeng, Ph.D.
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:132
中文關鍵詞:鯉魚;可體松;紅血球生成;魚;醣皮質接收器;緊迫;鋅
外文關鍵詞:Common carpCortisolErythropoiesisFishGlucocorticoid receptorStressZinc.
相關次數:
  • 被引用被引用:2
  • 點閱點閱:477
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
全文摘要
鋅是生物必須之微量元素,一般動物組織中之鋅濃度約為10 ~ 100 μg/g wet weight,然而鯉魚之消化道組織卻有高濃度之鋅 (562 ± 287 μg/g fresh tissue),遠高於其他魚類。本論文希望了解鯉魚含有高鋅之生理現象與其生態是否有關。鯉魚在生態上與其他生物最不同之處是其能極度容忍缺氧,並能耐極端溫度之變化,鯉魚可以生存在4 ~ 35℃之水溫中。缺氧與水溫劇烈變化對魚類都是一種緊迫 (stress)。本論文係研討鯉魚組織中之高鋅與其能容忍緊迫之相關。
為了解鯉魚及鯽魚之高鋅與能耐缺氧兩者間是否有關,乃進行以下實驗。將五批鯉魚與六批鯽魚 (每批各100尾),在水溫25 ~ 31℃下,進行缺氧實驗5 d,發現494尾鯉魚平均死亡率為20%,但600尾鯽魚完全沒有死亡。死亡鯉魚消化道組織中之鋅濃度,明顯地比存活之魚低 (39 ± 30 vs 152 ± 44 μg/g fresh tissue, P < 0.001)。鯽魚消化道組織中鋅濃度,平均為 652 ± 458 μg/g fresh tissue。將實驗中一批不耐缺氧之鯉魚餵食高鋅飼料後,進行缺氧實驗,調查高鋅及其活存率之關係。餵食過高鋅飼料 1及2個月之鯉魚,其存活率由0 %增至~50 %,而餵食高鋅飼料6個月之鯉魚,則100 %存活。由此可知鯉魚及鯽魚消化道組織中高鋅與其缺氧活存率,有密切關係。
為了解在緊迫下,魚類血液plasma cortisol及其鋅濃度是否有關,乃比較實驗室靜養鯉魚 (resting fish) 與市售鯉魚 (stressed fish),其血液plasma cortisol、鋅濃度、及細胞數目之含量。實驗後發現市售鯉魚血液之平均plasma cortisol、血液鋅濃度、細胞數目皆明顯地高於實驗室之鯉魚 (1,522 vs 200 ng/ml;30.1 vs 3.71 μg/ml whole blood;1.76 vs 1.49 ×109 cells/ml whole blood)。且鯉魚血液plasma cortisol與其總鋅濃度之間,有正相關存在。鯉魚頭腎組織之鋅濃度及細胞數,stressed fish顯著地高於resting fish (665 vs 409 μg/g fresh tissue;1.62 vs 0.81 ×109 cells/g fresh tissue);在腎臟及脾臟間,stressed fish與resting fish,則無顯著差異。在草魚、鰱魚及吳郭魚三種魚類中,市售魚 (stressed fish) 血液平均plasma cortisol濃度亦皆高於實驗室之魚 (resting fish)。然而,此三種魚類之頭腎、腎臟及脾臟鋅濃度,皆在12 ~ 25 μg/g fresh tissue之間。在stressed fish與resting fish之間,鋅濃度沒有差異。
將鯉魚注射cortisol後,plasma cortisol由平均178升為540 ng/ml;血液細胞濃度顯著地上升,由平均1.06升為1.33×109 cells/ml whole blood;總鋅濃度由平均3.91上升至24.0 μg/ml whole blood。鯉魚注射cortisol後,其消化道組織及肌肉之鋅濃度會下降;血液、頭腎、腎臟及脾臟之鋅濃度會上升。肝胰臟、其他內臟組織及骨骼組織之鋅濃度則沒有顯著變化。鋅主要是由消化道組織,少部分由肌肉移往造血組織 (頭腎、腎臟及脾臟) 及血液。將草魚、鰱魚及吳郭魚注射cortisol後,除了plasma cortisol升高外,對此三種魚類之血液及造血組織鋅濃度並未產生影響。
將100尾鯉魚進行5 d的缺氧實驗後發現,鯉魚血液plasma cortisol濃度,在缺氧1 d後,顯著地由150上升至590 ng/ml (接近四倍值)。同時,消化道組織之鋅濃度由216顯著地下降至69 μg/g fresh tissue;頭腎之鋅濃度,由d 0之328顯著地增加至d 3之1,871 μg/g fresh tissue;而脾臟之鋅濃度,是由d 3顯著地增加至d 7。在缺氧之d 5,鯉魚頭腎鋅濃度增加之時,血液細胞含量也顯著地增加。然而當缺氧緊迫解除時,鯉魚之血液、消化道組織、頭腎及脾臟組織之鋅含量則恢復至未缺氧之狀態。在靜養時,鯉魚會將鋅儲存在消化道組織,當遇到緊迫時,鋅會解離,輸送至頭腎;在頭腎中,誘導紅血球增生。增生之紅血球可能是經脾臟而輸送至血液。
將靜養時鯉魚血液製成抹片,經Giemsa染色後,由顯微鏡觀察,可知鯉魚血液之組成主要為紅血球、6 μm細胞及白血球,其所佔比例分別為89%、6%及5%。紅血球及6 μm細胞對43 kDa鋅結合蛋白質之抗體皆有反應,但是白血球則無反應。為了確定6 μm細胞為何種細胞,將鯉魚先行大量抽血 (占其總血量約40 %),經不同日期後,再抽血觀察其血液之生成。鯉魚在抽血6 d後,血液細胞中6 μm細胞含量由6 %上升至23 %。此增生之6 μm細胞應為新生紅血球。免疫螢光實驗顯示這些6 μm細胞對43 kDa鋅結合蛋白質抗體會呈現反應,且其反應比紅血球強烈。鯉魚在靜養狀態、市售、注射cortisol後及缺氧後,其新生紅血球比例分別為6、48、20、18 %;plasma cortisol濃度則分別為200、1,522、540、460 ng/ml。新生紅血球之比例與其plasma cortisol濃度成正比。餵食高鋅鯉魚血液細胞中,有較一般鯉魚多出數倍之新生紅血球。本論文所研究之市售鯉魚、注射cortisol、遭遇缺氧緊迫及高鋅鯉魚之血液細胞中,都顯示有大量新生紅血球細胞。鯉魚為什麼比其他魚類更容易適應緊迫之主要原因可能是,鯉魚具有一個有效率調控醣皮質接收器之系統。在此系統中,鋅經由醣皮質接收器扮演一個重要之角色。
Summary
Zinc is an essential nutrient for most organisms. The content of zinc in most tissues of different species is on the order of 10 ~ 100 μg/g wet weight. However, the common carp Cyprinus carpio has high zinc contents in its digestive tract tissue (562 ± 287 μg/g fresh tissue) which is not seen in other fishes. The common carp is able to survive days of anoxia at room temperature and can survive for several months at temperatures between 4 ~ 35℃. In this report, the link between high zinc levels and the extreme stress tolerance of common carp was studied.
Five lots of common carp and six lots of crucian carp (each lot of 100 fish) were treated under anoxia for 5 days at a water temperature of 25 ~ 31℃. The average mortality for the whole sample totaling 494 common carp was 20 %. None of the 600 crucian carp in all six groups subjected to 5 days of anoxia died. The zinc concentration in the whole tissue of the digestive tract of the common carp that died was significantly lower than the concentrations found in the sample of fish that survived (39 ± 30 vs 152 ± 44 μg/g fresh tissue, P < 0.001). Mean zinc concentration in the digestive tract tissues of crucian carp just before the start of the experiment was 652 ± 458 μg/g fresh tissue. A lot of common carp which had a low tolerance for anoxia were used to investigate the effect of a high zinc diet on survival from anoxia. Feeding these fish a high zinc diet (2,000 mg zinc/kg diet) for 1 or 2 months increased their survival rate by as much as 50%. Feeding them the same high zinc diet for 6 months brought the survival rate to 100 % over the 5 days of anoxia. It was found the high tolerance to anoxia in common carp and crucian carp is related to zinc concentration in the digestive tract tissue of the fish.
Plasma cortisol, zinc and blood cell contents in the laboratory common carp (resting fish) were compared with those from the market (stressed fish). The plasma cortisol concentration, zinc concentration in the whole blood, and the blood cell concentration from the stressed fish were significantly greater than those from resting fish (1,522 vs 200 ng/ml, 30.1 vs 3.71 μg/ml whole blood, 1.76 vs 1.49 × 109cells/ml whole blood). A strong positive correlation between plasma cortisol concentration and blood cell zinc concentration in the common carp was observed. The zinc content and the cell concentration in the whole tissue of stressed common carp head kidney is significantly higher than that from the resting fish (665 vs 409 μg/g fresh tissue, 1.62 vs 0.81 × 109cells/ml whole blood). However, there were no significant differences between the zinc contents in the whole tissues of common carp kidney and spleen from the stressed and resting samples. The plasma cortisol concentrations in the grass carp, silver carp and tilapia from the stressed fish were all much higher than those from the resting fish. However, the difference of zinc concentrations in the whole blood of these fish are rather small. The mean zinc contents in all of the various tissues analyzed from the different grass carp, silver carp and tilapia are between 12 and 25 μg/g fresh tissue. There was little or no difference between the zinc contents from the stressed and the resting grass carp, silver carp and tilapia.
Two days after cortisol injection, the mean plasma cortisol concentration in the common carp increased from 178 to 540 ng/ml, while the mean blood cell concentration significantly increased from 1.06 to 1.33 × 109cells/ml whole blood. After cortisol injection, the mean zinc concentration in common carp whole blood increased from 3.91 to 24.0 μg/ml whole blood. Significant zinc decreases in the digestive tract tissue and muscle were observed. Similarly, significant increases in blood, head kidney, kidney and spleen zinc levels were found. There was no change in the zinc level of the hepatopancreas or any other visceral or skeletal tissue. A significant amount of zinc was released from the digestive tract tissue, and to a lesser extent from the muscle, into the hemopoietic tissues (i.e., head kidney, kidney and spleen) and blood. The same concentration of cortisol was injected into grass carp, silver carp and tilapia. The mean plasma cortisol level significantly changed in grass carp and silver carp, respectively. Cortisol injection had no effect on the zinc content in the blood, head kidney, kidney and spleen of the grass carp, silver carp and tilapia.
Common carp (100 fish) were subjected to anoxia for 5 days, followed by 4 days recovery. The mean plasma cortisol level increased from 150 to 590 ng/ml 1 day after anoxia (approximately fourfold). It is notable that the zinc content in the digestive tract tissue of the common carp greatly decreased from 216 to 69 μg/g fresh tissue following the increase in plasma cortisol. Additionally, the mean zinc content in the whole head kidney tissue greatly increased from 328 to 1,871 μg/g fresh tissue. Zinc content in the spleen of the common carp showed a different pattern, increasing from day 3 to day 5, and continued to increase until day 7 (i.e., 2 days after recovery). Both the zinc and cell concentration in common carp whole blood and head kidney significantly increased after 5 days anoxia. When the plasma cortisol level recovered to a normal state, the zinc content in the blood, the digestive tract tissue, head kidney, and spleen also recovered. Under normal conditions, zinc is stored in digestive tract tissue. When under stress, the zinc content in the digestive tract tissue of the common carp was released. The released zinc was transported to the head kidney. In the head kidney, the released zinc may induce erythropoiesis. Considering the timing of the change of zinc in head kidney and spleen, it is very possible that the zinc increase in the spleen from day 3 to day 7 came from head kidney. Increased blood cell number may via spleen come to blood.
Under normal conditions, common carp blood cells were stained with Giemsa for light microscopic examination, it was included red blood cells, 6 μm cells, white blood cells and other cells, the proportions of which were calculated to be 89, 6 and 5 %, respectively. The blood cells of the common carp under normal conditions were immunofluorescently stained with an antibody against the 43 kDa zinc-binding protein isolated from common carp digestive tract tissue. The cell surface of both mature red blood cells and the 6 μm cells were immunofluorescently stained, but white blood cells were not. To determine the identity of these 6 μm cells, common carp were subjected to bleeding to produce new red blood cells. Common carp blood was sampled 6 days after bleeding and stained, the percentage of 6 μm cells increased from 6 to 23%. Therefore, it is very probable that the 6 μm cells are ‘‘immature red blood cells’’. These putative immature red blood cells were immunofluorescently stained with the antibody against the 43-kDa zinc-binding protein. The immature red blood cells had much stronger immunofluorescence than mature red blood cells. The percentage of immature red blood cells in the whole blood of common carp under normal conditions was 6%; in the market, cortisol-injected and anoxia-stressed animals, the percentage was 48, 20 and 18%, respectively. The percentage of immature red blood cells in the common carp whole blood was correlated with mean plasma cortisol values (in ng/ml): 200 for fish under normal conditions, 1,522 for market fish, 540 for cortisol-injected fish and 460 for anoxia-stressed fish. A strong positive correlation between the percentage of immature red blood cells and the mean plasma cortisol values was observed. Feeding common carp a high zinc diet (2,000 mg zinc/kg diet) for 6 months increased their immature red blood cells more than under normal conditions. In the present study, common carp that were obtained from the market, cortisol-injected, tested 5 days after anoxia, or fed common carp a high zinc diet, all showed higher blood cell numbers. One important reason why common carp can tolerate more stress than other fish may be because they have a system that regulates the glucocorticoid receptor more efficiently than other fish under stress. In this system, high zinc levels may play an important role via glucocorticoid receptor.
目 錄
全文摘要 1
英文摘要 5

第一章 研究背景與目的 12
一、 研究背景 12
1. 動物組織高鋅之生理意義,目前並不清楚 12
2. 鯉魚組織中高濃度之鋅 12
3. 鯉魚組織中高濃度鋅之生理特性 13
4. 鯉魚之「鋅結合蛋白質」與其「結締組織細胞」 15
二、 研究目的 16

第二章 文獻整理 17
1. 鋅之生物化學及生理學之研究 17
2. 魚類之stress與神經內分泌反應之關係 18
3. 缺氧時動物之對應 19
4. 低氧或缺氧時,魚類中間代謝 (intermediary metabolism) 之變化 20
5. 鋅之增加紅血球對氧之親和力 21
6. 低溫對魚類之影響 22
7. 注射catecholamines或cortisol對魚類intermediary metabolism之影響 23
8. 造血組織 23
9. 紅血球生成組織 25
10. 紅血球的分化 25
11. 紅血球生命週期 27
12. 魚類之血液數值 27
13. 魚類之血液量 29
14. Cortisol與鋅之關連性 29

第三章 鯉魚之耐“缺氧”與其消化道組織鋅濃度之關係 31
一、 前言 31
二、 材料與方法 32
1. 實驗用魚 32
2. 缺氧實驗 32
3. 試魚取樣 33
4. 鯉魚消化道組織之次細胞分劃 (subcellular fractionation) 34
5. 以EDTA抽取消化道組織的鋅 35
6. 鋅濃度之測定 35
7. 已餵食「高鋅飼料」鯉魚,在缺氧時之存活率 35
三、實驗結果 37
1. 缺氧時,鯉魚之存活率與其消化道組織中之鋅濃度 37
2. 缺氧時,鯽魚之存活率與其消化道組織中之鋅濃度 37
3. 以次細胞分劃鯉魚與鯽魚消化道組織中鋅濃度 37
4. 缺氧期間,鯉魚消化道組織中鋅濃度之變化 38
5. 缺氧時,餵食「高鋅飼料」鯉魚之存活率 38
四、討論 40
1. 鯉魚適應缺氧與組織鋅濃度之關係 40
2. 適應缺氧與高鋅飼料之關係 40
3. 缺氧時,鯉魚及鯽魚之泳動行為 41
4. 缺氧時,鯉魚消化道組織鋅濃度之下降 42
五、摘要 43

第四章 鯉魚血液及造血組織鋅濃度與cortisol之關係 44
一、 前言 44
二、 材料與方法 46
1. 實驗用魚 46
2. Cortisol注射鯉魚之實驗 46
3. 鯉魚注射cortisol 46
4. 試魚之麻醉、抽血 47
5. 試魚之血液分劃 48
6. Cortisol之測定 49
7. 鯉魚頭腎、腎臟及脾臟組織之細胞分劃及鋅濃度測定 50
8. 鯉魚肝胰臟、內臟其他組織、骨骼、肌肉之細胞分劃及
鋅濃度測定 51
三、實驗結果 52
1. 鯉魚血液plasma cortisol及鋅之含量 52
2. Resting與stressed鯉魚頭腎、腎臟及脾臟,細胞數與
鋅含量 53
3. Resting與stressed草魚、鰱魚及吳郭魚血液plasma cortisol與
鋅含量 53

4. Resting與stressed草魚、鰱魚及吳郭魚,其頭腎、腎臟及脾臟之鋅含量 54
5. 鯉魚注射cortisol後,血液鋅濃度之變化 54
6. 鯉魚注射cortisol後,魚體各組織間鋅濃度之變化 55
7. 草魚、鰱魚及吳郭魚注射cortisol後,血液及造血組織
鋅濃度之變化 55
四、討論 56
1. 市場購買之魚 56
2. 鯉魚血液中之plasma cortisol濃度 56
3. 草魚、鰱魚及吳郭魚血液中之plasma cortisol濃度 58
4. 鯉魚血液中plasma cortisol之上升,會促使其鋅濃度上升,
而其他魚不會 58
5. 注射cortisol後,鯉魚各組織間鋅之移動 59
五、摘要 60

第五章 缺氧之緊迫,對鯉魚血液及造血組織鋅濃度
之影響 62
一、 前言 62
二、 材料與方法 63
1. 缺氧實驗 63
2. 試魚之麻醉、抽血 63
3. 試魚之血液分劃 63
4. Cortisol測定 63
5. 鯉魚頭腎、腎臟及脾臟組織之細胞分劃及鋅濃度測定 63
三、實驗結果 64
1. 缺氧緊迫對鯉魚血液plasma cortisol濃度、血液細胞數及血液各部分鋅濃度之影響 64
2. 缺氧緊迫對鯉魚消化道組織及造血組織鋅濃度之影響 64
四、討論 66
1. 在缺氧緊迫開始時,鯉魚plasma cortisol含量會急速上升,
消化道組織鋅濃度下降 66
2. 在缺氧緊迫d 3至d 5之時,鯉魚頭腎之鋅濃度增加,隨後
血液細胞數增加 66
3. 在缺氧緊迫之時,鯉魚頭腎組織與腎臟及脾臟組織間鋅濃度
之關係 66
4. 恢復供氧後,鯉魚各組織鋅之變化 67
五、摘要 68

第六章 鯉魚血液細胞在緊迫中之變化 69
一、 前言 69
二、 材料與方法 71
1. 注射cortisol實驗 71
2. 缺氧實驗 71
3. 試魚之麻醉、抽血 71
4. 試魚之血液分劃 71
5. Giemsa 染色 71
6. 鯉魚鋅結合蛋白質之免疫螢光染色 72

三、實驗結果 74
1. 在靜養時,鯉魚血液細胞之顯微照相 74
2. 鯉魚之新生紅血球 74
3. 注射cortisol後,鯉魚紅血球之變化 75
4. 缺氧後,鯉魚紅血球之變化 76
5. 不同緊迫下,鯉魚新生紅血球之百分比與plasma cortisol
之關係 76
6. 餵食一般飼料及高鋅飼料鯉魚之血液細胞 76
四、討論 78
1. 鯉魚之新生紅血球 78
2. 鯉魚新生紅血球與高鋅鯉魚之抵抗缺氧緊迫 80
五、摘要 81

第七章 綜合討論 82
1. 緊迫會造成所有魚類plasma cortisol濃度上升,但只有在鯉魚,plasma cortisol會誘導組織鋅濃度改變 82
2. Cortisol會誘導鯉魚各組織間鋅濃度變化 83
3. 鯉魚消化道組織是鋅之儲藏庫 84
4. 鯉魚頭腎是鋅之利用處 86
5. 在緊迫下,鋅誘發鯉魚紅血球生成所扮演之角色 87

附表及附圖 89
參考文獻 117

參考文獻
李淑慧 (1999) 鯉魚、鯽魚、金魚及其他魚類組織之鋅及含鋅物質之生化學比較。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
林子詠 (2003) 水溫和缺氧對鯉魚血液和消化道組織鋅濃度之影響。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
姚政源 (2002) 鯉魚血液中鋅之分布及其紅血球對65Zn之親和性。 國立臺灣海洋大學食品科學系碩士學位論文,基隆。
張育尹 (2001) 水溫和溶氧對鯉魚組織鋅濃度之影響。國立臺灣海洋大學食品科學系碩士學位論文,基隆。
張智傑 (2006) 缺氧與鯉魚消化道組織「鋅結合蛋白質」和纖維母細胞之關係。國立臺灣海洋大學食品科學系碩士學位論文, 基隆。
陳昭儀 (2004) 缺氧與鯉魚消化道組織「鋅結合蛋白質」之關係。 國立臺灣海洋大學食品科學系碩士學位論文,基隆。
劉建麟 (2010) 緊迫對鯉魚頭腎組織鋅濃度之影響及其生理意義。 國立臺灣海洋大學食品科學系碩士學位論文,基隆。
Association of official analytical chemists (AOAC) (1970) Official methods of analysis. In: William H (ed) Animal feed. Association of Official Analytical Chemists, Washington, pp 132
Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P, Schütz G, Beug H (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 13: 2996-3002
Belanger JM, Son JH, Laugero KD, Moberg GP, Doroshov, Lankford SE, Cech JJJ (2001) Effects of short-term management stress and ACTH injections on plasma cortisol levels in cultured white sturgeon, Acipenser transmontanus. Aquaculture 203: 165-176
Bettger WJ, O’Dell BL (1993) Physiological roles of zinc in the plasma membrane of mammalian cells. J Nutr Biochem 4: 194-200
Blaxter JHS (1992) The effect of temperature on larval fishes. Netherlands Journal of Zoology 42: 336-357
Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 204: 3171-3181
Brown ED, Chan W, Smith JC (1978) Bone mineralization during a developing zinc deficiency. Proc Soc Exp Biol Med 157: 211-214
Catton WT (1951) Blood cell formation in certain teleost fishes. Blood 6: 39-60
Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. JAMA 267: 1244-1252
Crawshaw LI (1979) Responses to rapid temperature change in vertebrate ectotherms. Am Zool 19: 225-237
Dalla Via J, van den Thillart G, Cattani O, de Zwaan A (1994) Influence of long-term hypoxia exposure on the energy metabolism of Solea solea.Ⅱ. Intermediary metabolism in blood, liver and muscle. Mar Ecol Prog Ser 111: 17-27
Dash S, Brewer GJ, Oelshlegel JFJ (1974) Effect of zinc on haemoglobin binding by red blood cell membranes. Nature 250: 251-252
Disilverstro RA, Cousins RJ (1983) Physiological ligands for copper and zinc. Ann Bew Nutr 3: 261-288
Eckhert CD (1983) Elemental concentrations in ocular tissues of various species. Exp Eye Res 37: 639-647
Ellis AE (1984) Bizarre forms of erythrocytes in a specimen of plaice, Pleuronectes platessa L. J Fish Dis 7: 411-414
Fänge R (1977) Size relations of lymphomyeloid organs in some cartilaginous fish. Acta Zool (stockholm) 58: 143-162
Favier AA, Faure H, Arnaud J (1985) Determination of ultrafilterable zinc, transferrin bound and albumin bound zinc using ultrafiltration and flameless AAS. In: Mills CF, Bremner I, Chesters JK (eds) Trace elements in man and animals. Commonwealth Agricultural Bureau, Slough, pp 666-670
Fey F (1965) Hämatologische untersuchungen der blutbildenden gewebe niederer wirbeltiere. Blut 84: 122-146
Franklin CE, Davison W, Foster ME (1990) Evaluation of the physiological responses of quinnat and sockeye salmon to acute stressors and sampling procedures. New Zealand Natural Sciences 17: 29-38
Halver JE (2006) Se, zn & vitamin c stores are mobilized during stress. Abstract book of the 11th international symposium on fish nutrition and feeding. Biarritz, France. May 28 to June 1, 2006.
Hambidge KM, Casey CE, Krebs NF (1986) Zinc. In: Mertz W (ed) Trace elements in human and animal nutrition. Academic Press, Orlando, pp 3-28
Hardy RW, Sullivan CV, Koziol AM (1987) Absorption, body distribution, and excretion of dietary zinc by rainbow trout. Fish Physiol Biochem 3: 133-143
Hayhoe FGJ, Flemans RJ (1992) Color atlas of hematological cytology. Mosby-Year Book, St. Louis, pp 384
Hochachka PW (1986) Defence strategies against hypoxia and hypothermia. Science 231: 234-241
Hochachka PW, Lutz PL (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B 130: 435-459
Hogstrand C, Wood CM (1996) The physiology and toxicology of zinc in fish. In: Taylor EW (ed) Toxicology of aquatic pollution: physiological, cellular and molecular approaches. Cambridge university press, Cambridge, pp 61-84
Houston AH (1980) Components of the hematological response of fishes to environmental temperature change. In: Ali MA (Ed) Environmental physiology of fishes. Plenum Press, New York, pp 241-298
Houston AH, Murad A (1995) Erythrodynamics in fish: recovery of the goldfish Carassius auratus from acute anemia. Can J Zool 74: 411-418
Hrubec TC, Smith AS (2000) Hematology of fish. In: Feldman BF, Zinkl JG, Jain NC (eds) Schalm′s veterinary hematology. Lippincott Williams&Wilkins, Baltimore, pp 1120-1125
Hyllner SJ, Andersson T, Haux C, Olsson PE (1989) Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J Cell Physiol 139: 24-28
Iorio RJ (1969) Some morphologic and kinetic studies of the developing erythroid cells of the common goldfish, Carassius auratus. Cell Tissue Kinet 2: 319-331
Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72: 449-489
Jeng SS, Huang YW (1973) Heavy metal contents in taiwan’s cultured fish. Bull Inst Zool Acad Sini 12: 79-85
Jeng SS, Sun LT (1981) Effects of dietary zinc levels on zinc concentrations in tissues of common carp. J Nutr 111: 134-140
Jeng SS, Lian JL (1994) Comparison of zinc absorption between common carp and other fresh water fishes. Zool Stud 37: 78-85
Jeng SS, Wang JT, Sun LT (1999) Zinc and zinc binding substances in the tissues of common carp. Comp Biochem Physiol B 122: 461-468
Jeng SS, Wang MS (2003) Isolation of a zn-binding protein mediating cell adhesion from common carp. Biochem Biophys Res Commun 309: 733-742
Jeng SS, Yau JY, Chen YH, Lin TY, Chung YY (2007) High zinc in the erythrocyte plasma membranes of common carp Cyprinus carpio. Fish Sci 73: 421-428
Kapff CT, Jandl JH (1991) Blood. Atlas and sourcebook of hematology. Little bown press, Boston, pp 158
Kassahn KS, Crozier RH, Pörtner HO, Caley MJ (2009) Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev 84: 277-292
Kito H, Ose Y, Mizuhira V, Sato T, Ishikawa T, Tazawa T (1982) Separation and purification of (Cd, Cu, Zn)-metallothionein in carp hepato-pancreas. Comp Biochem Physiol C 73: 121-127
Kobayashi I, Sekiya M, Moritomo T, Ototake M, Nakanishi T (2007) Isolation of side population cells from ginbuna carp (Carassius auratus langsdorfii) kidney hematopoietic tissues. Dev Comp Immunol 31: 696-707
Kodama T, Shimizu N, Yoshikawa N, Makino Y, Ouchida R, Okamoto K, Hisada T, Nakamura H, Morimoto C, Tanaka H (2003) Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression. J Biol Chem 278: 33384-33391
Kühn ER, Corneillie S, Ollevier F (1986) Circadian variations in plasma osmolality, electrolytes, glucose, and cortisol in carp (Cyprinus carpio). Gen Comp Endocrinol 61: 459-468
Le Morvan-Rocher C, Troutaud D, Deschaux P (1995) Effects of temperature on carp leukocyte mitogen-induced proliferation and nonspecific cytotoxic activity. Dev Comp Immunol 1: 87-95
Lehmann J, Stürenberg FJ (1975) Haematologisch-serologische substratuntersuchungen an der regenbogenforelle, Salmo gairdneri Richardson. Gewässer und Abwässer 55: 123
Liao HJ, Chen YH, Jeng SS (2006) Association of zinc with connective tissue in the digestive tract of common carp. Fish Sci 72: 893-902
Lutz PL, Nilsson GE, Prentice HM (2003) The brain without oxygen: causes of failure-physiological and molecular mechanisms for survival, 3rd edn. Kluwer Academic Publishers, Orecht, pp 43-54
Maita M, Yoshiyasu T, Okamoto N, Ikeda Y (1997) Hematological parameters in rainbow trout exposed to hypoxia for long term. Nippon Suisan Gakkaishi 63: 992-993
Marinsky CA, Houston AH, Murad A (1990) Hypoxia-related changes in hemoglobin isomorph abundances in rainbow trout, Salmo gairdneri. Can J Zool 86: 884-888
Mazeaud MM, Mazeaud F, Donaldson EM (1977) Primary and secondary effects of stress in fish: some new data with a general review. Trans Am Fish Soc 106: 201-218
Murad A, Houston AH, Samson L (1990) Haematological response to reduced oxygen-carrying capacity, increased temperature and hypoxia in goldfish, Carassius auratus L. J Fish Biol 36: 289-305
Murad A, Everill S, Houston AH (1993) Division of goldfish erythrocytes in circulation. Can J Zool 71: 2190-2198
Nilsson GE (1995) Oxygen availability: brain defence mechanisms. In: Hochachka PW, Momsen, TP (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 19-44
Nilsson GE, Renshaw GMC (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the north european crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207: 3131-3139
Noyes AD, Grizzle JM, Plumb JA (1991) Hematology and histopathology of an idiopathic anemia of channel catfish. J Aquat Anim Health 3: 161-167
O’Dell BL (2000) Role of zinc in plasma membrane function. J Nutr 130: 1432S-1436S
Oelshlegel FJ, Brewer JrGJ, Prasad AS, Knutsen C, Schoomaker EB (1973) Effect of zinc on increasing oxygen affinity of sickle and normal red blood cells. Biochem Biophys Res Commun 53: 560-566
Ogino C, Takeuchi L, Takeda H, Watanabe T (1979) Availability of dietary phosphorous in carp and rainbow trout. Bull Jpn Soc Sci Fish 45: 1527-1532
Pandey BN, Chanchal AK, Singh SB (1978) Effect of hormones and pharmacological drugs on the blood of Anabas teseudineus (Bloch). Blut 105: 665-671
Peng LI, Brian R, Delbert MG (2009) Effect of handling and transport on cortisol response and nutrient mobilization of golden shiner, Notemigonus crysoleucas. J World Aquac Soc 40: 803-809
Pickering AD (1981) Introduction: the concept of biological stress. In: Pickering AD (ed) Stress and fish. Academic Press, London, pp 1-9
Randall DJ, Perry SF (1992) Catecholamines. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology. CA: Academic Press, San Diego, pp 255-300
Redgate E (1974) Neural control of pituitary adrenal activity in cyprinus carpio. Gen Comp Endocrinol 22: 35-41
Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22: 81-113
Rothmann C, Levinshal T, Timan B, Avtalion RR, Malik Z (2000) Spectral imaging of red blood cells in experimental anemia of Cyprinus carpio. Comp Biochem Physiol A 125: 75-83
Schreck CB, Moyle PB (1990) Blood and circulation. In: Houston AH (ed) Methods for fish biology. American Fisheries Society Press, Maryland, pp 273-322
Selye H (1950) Stress and the general adaptation syndrome. British Medical Journal 17: 1383-1392
Selye H (1973) The evolution of the stress concept. Am Sci 61: 692-699
Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15: 551-578
Shoubridge EA, Hochachka PW (1980) Ethanol: novel end product of vertebrate anaerobic metabolism. Science 209: 308-309
Speckner W, Schindler J, Albers C (1989) Age-dependent changes in volume and haemoglobin content of erythrocytes in the carp (Cyprinus carpio L.). J Exp Biol 141: 133-149
Spry DJ, Hodson PV, Wood CM (1988) Relative contributions of dietary and waterborne zinc in salmo gairdneri. Can J Fish Aquat Sci 45: 32-41
Stecyk JAW, Farrell AP (2006) Regulation of the cardiorespiratory system of common carp (Cyprinus carpio) during severe hypoxia at three seasonal acclimation temperatures. Physiol Biochem Zool 79: 614-627
Stickney RR (2000) Tilapia culture. In: Stickney RR (ed) Encyclopedia of aquaculture. Wiley, New York, pp 934-941
Sun LT, Jeng SS (1998) Comparative zinc concentrations in tissues of common carp and other aquatic organisms. Zool Stud 37: 184-190
Sun LT, Jeng SS (1999) Accumulation of zinc from diet and its release in common carp. Fish Physiol Biochem 20: 313-324
Sutherland B, Lowe NM, Burn BJ, King JC (1997) The effect of zinc depletion on the concentration of circulating hormones and transport proteins. In: Fischer PWF, L'Abbe MR, Cockell KA, Gibson RS (eds) Trace elements in man and animals proceedings of the ninth international symposium on trace elements in man and animals. NRC Research Press, Ottawa Canada, pp 609-611
Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57: 399-411
Tomonaga S, Hirokane T, Shinohara H, Awaya K (1973) The primitive spleen of the hagfish. Zoological Magazine 82: 215-217
Tripathi NK, Latimer KS, Burnley VV (2004) Hematologic reference intervals for koi (Cyprinus carpio), including blood cell morphology, cytochemistry, and ultrastructure. Vet Clin Pathol 33: 74-83
Underwood EJ (1977) Trace elements in human and animal nutrition. Academic Press, New York, pp 196-242
Vaillancourt SH, Allen JC (1991) Glucocorticoid effects on zinc transport into colostrum and milk of lactating cows. Biol Trace Elem Res 30: 185-196
Vallee BL (1988) Zinc: biochemistry, physiology, toxicology and clinical pathology. Biofactors 1: 31-36
Vallee BL, Galdes A (1984) The metallobiochemistry of zinc enzymes. Wiley Press, New York, pp 283-430
Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73: 79-118
Van den Thillart G, van Waarde A (1985) Teleosts in hypoxia: aspects of anaerobic metabolism. Mol Physiol 8: 393-409
Van der Boon J, van den Thillart GEEJM, Addink ADF (1991) The effects of cortisol administration on intermediary metabolism in teleost fish. J Comp Physiol A 100: 47-53
Van Raaij MTM, Van den Thillart GEEJM, Vianen GJ, Pit DSS, Balm PHM, Steffens AB (1996) Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss, L.) and common carp (Cyprinus carpio, L.) during deep hypoxia and subsequent recovery. J Comp Physiol B 166: 443-452
Wagner EJ, Bosakowski T, Intelmann S (1997) Combined effects of temperature and high pH on mortality and the stress response of rainbow trout after stocking. Trans Am Fish Soc 126: 985-998
Wang MS, Jeng SS (2006) Binding characteristics of the zn-binding membrane protein from common carp. Fish Sci 72: 437-445
Wedemeyer GA, McLeay DJ (1981) Methods for determining the tolerance of fishes to environmental stressors. In: Barton BA (ed) Stress and fish. Academic Press, London, pp 517-525
Wedemeyer GA, Barton BA, McLeay DJ (1990) Stress and acclimation. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society Press, Bethesda, pp 451-490
Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77: 591-625
Weyts FAA, Verburg-van Kemenade BML, Flik G, Lambert JGD, Wendelaar Bonga SE (1997) Conservation of apoptosis as an immune regulatory mechanism: effects of cortisol and cortisone on carp lymphocytes. Brain Behav Immun 11: 95-105
Williams RJP (1984) Zinc: what is its role in biology? Endeavour 8: 65-70
Wojtaszek J, Dziewulska-Szwajkowska D, Łozińska-Gabska M, Adamowicz A, Dżugaj A (2002) Hematological effects of high dose of cortisol on the carp (Cyprinus carpio L.):cortisol effect on the carp blood. Gen Comp Endocrinol 125: 176-183
Wu FYH, Wu CW (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7: 251-272
Wu SM, Chou YY, Deng AN (2002) Effects of exogenous cortisol and progesterone on metallothionein expression and tolerance to waterborne cadmium in tilapia (Oreochromis mossambicus). Zool Stud 41: 111-118
Yoffer JM (1985) Cellular migration streams, the integration of the lymphomyeloid complex. Lymphology 18: 5-21
Yoffer JM, Courtice FC (1970) Lymphatics. In: Yoffer JM (ed) Lymphatics, lymph and the lymphomyeloid complex. Academic Press, New York, pp 542-683
Zhou BS, Wu RSS, Randall DJ, Lam PKS, Ip YK, Chew SF (2000) Metabolic adjustments in the common carp during prolonged hypoxia. J Fish Biol 57: 1160-1171
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊