|
[1]K. A. Tsokos, Physics for the IB Diploma Fifth edition, Cambridge University Press, Cambridge, 2008 ISBN 0521708206. [2] Perlin, John (2004). "The Silicon Solar Cell Turns 50". National Renewable Energy Laboratory. [online] available http://www.nrel.gov/docs/fy04osti/33947.pdf. Retrieved 5 October 2010. [3] Electricity Generating Authority of Thailand [online] available http://www2.egat.co.th/re/solarcell/solarcell.htm. [4] Y. Tian and T. Tatsuma, J. Am. Chem. Soc. 127 (2005) 7632. [5] W. Shockley and H.J. Queisser, J. Appl. Phys. 32 (1961) 510. [6] N. S. Lewis, Science 315 (2007) 798. [7] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA, 2005 ISBN 3-527-40428-7 pp 141. [8] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 127 (2005) 16835. [9] “Solar Cell-Photovoltaic” [online] available http://bangkok-guide.z-xxl.com/snack-knowledge/4169.html. [10] “Thananun traffic Co.Ltd” [online] available http://thananun2008.tarad.com/. [11] “Porntawee OA Sales and Services” [online] available http://www.pornthaveeoa.com/index.php?mo=30&cid=131656. [12] “Praphansarn” [online] available http://www.praphansarn.com/new/forum/forum_posts.asp?TID=12061&get=last. [13] “Dye-sensitized solar cell” [online] available http://www.postech.ac.kr/chem/mras/eunju.htm [14] S.P.K. Lee, N.G. Park, Nature Materials, 8 (2009) 665. [15] “Nanotechnology-Quantum dot” [online] available http://www.atom.rmutphysics.com/charud/scibook/nanotech/Page/Unit3-9.html. [16] S. Gorer, G. Hodes, J. Phys. Chem. 98 (1994) 5338. [17] I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan, Z. Hens, Chem. Mater. 19 (2007) 6101. [18] R.D. Shaller, V.I. Klimov, Phys. Rev. Lett. 92 (2004) 186601. [19] M. C. Hanna and A. J. Nozik, J. Appl. Phys. 100 (2006) 074510. [20] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382. [21] L. W. Chong, H. T. Chien, and Y. L. Lee, J. Power Sources 195 (2010) 5109. [22] C. H. Chang and Y. L. Lee, Appl. Phys. Lett. 91 (2007) 053503. [23] Y. L. Lee and C. H. Chang, J. Power Sources 185 (2008) 584. [24] Z. Yang, C. Y. Chen, C. W. Liu, H. T. Chang, Chem. Commun. 46 (2010) 5485. [25] Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto, S. Kuwabata, Chem. Lett. 36 (2007) 88. [26] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, G. Hodes, J. Photochem. Photobiol. A 181 (2006) 306. [27] H. J. Lee, J. -H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel, M. K. Nazeeruddin, J. Phys. Chem. C 112 (2008) 11600. [28] H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, M. K. Nazeeruddin, Langmuir 25 (2009) 7602. [29] S. Q. Fan, D. Kim, J. J. Kim, D. W. Jung, S. O. Kang, J. Ko, Electrochem. Commun. 11 (2009) 1337. [30] Q. Shen, J. Kobayashi, L. J. Diguna, T. Toyoda, J. Appl. Phys. 103 (2008) 084304. [31] I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, J. Bisquert, Acc. Chem. Res. 42 (2009) 1848. [32] G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus- Abraham, E. H. Sargent, ACS Nano. 2 (2008) 833. [33] M. Abbas, B. Ali, S. I. Shah, P. Akhter, Key. Eng. Mat. 442 (2010) 404. [34] R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach J. Phys. Chem. B 106 (2002) 7578. [35] G. Y. Lan, Z. Yang, Y. W. Lin, Z. H. Lin, H. Y. Liao, H. T. Chang, J. Mater. Chem. 19 (2009) 2349. [36] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, J. Am. Chem. Soc. 130 (2008) 1124. [37] S. Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, J. Ko, Appl. Phys. Lett. 96 (2010) 063501. [38] Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Phys. Chem. Chem. Phys. 13 (2011) 4659. [39] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K. Nazeeruddin, M. Grätzel, Nano Lett. 10 (2010) 2609. [40] A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Lux-Steiner, Phys. Status Solidi (RRL) 2 (2008) 172. [41] S. Kitova, J. Eneva, A. Panov, H. Haefke, J. Imaging Sci. Technol. 38 (1994) 484. [42] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, Electrochem. Commun. 12 (2010) 1158. [43] T. G. Schaaff, A. J. Rodinone, J. Phys. Chem. 107 (2003) 10416. [44] A. Martí, G.L. Araújo, Sol. Energy. Mater. Sol. Cells. 43 (1996) 203. [45] R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem. 98 (1994) 3183. [46] J. F. Reber, M. Rusek, J. Phys. Chem. 90 (1986) 824. [47] R. Dalven, R. Gill, Phys. Rev. 159 (1967) 645. [48] Karakaya, W. T. Thompson, ASM international, Materials Park, OH. 1 (1990) pp. 88. [49] H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 27 (2004) 85. [50] V. Buschmann, G. V. Tendeloo, Ph. Monnoyer and J. B. Nagy, Langmuir 14 (1998) 1528. [51] A. Tubtimtae, M. W. Lee, G. J. Wang, J. Power Sources 196 (2011) 6603. [52] University of Toronto “The Ratio of Surface Area to Volume Explains Why Cells Are Small”.[online] available http://www.mie.utoronto.ca/labs/lcdlab/biopic/fig/4.2.jpg. [53] “Compound semiconductors: Physics, technology and device concepts” [online] available http://www-opto.e-technik.uni-ulm.de/lehre/cs/. [54] U. Diebold "The surface science of titanium dioxide". Surface Science Reports 48 (5-8) (2003) 53–229. doi:10.1016/S0167-5729(02)00100-0. [55] “Titanium dioxide” [online] available http://en.wikipedia.org/wiki/Titanium_dioxide. [56] M. Gräzel, Nature, 414 (2001) 338. [57] “Silver sulfide” [online] available http://commons.wikimedia.org/wiki/File:Silver-sulfide-unit-cell-3D-balls.png. [58] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann 1997 ISBN 0080379419. [59] L. S. Ramsdell, The crystallography of acnthite, Ag2S. Amer. Mineralogist 28 (1943) 401. [60] L. Yang, R. Xing, Q. Shen, K. Jiang, F. Ye, J. Wang, Q. Ren, J. Phys. Chem. B 110 (2006) 10534. [61] N. Belman, Y. Golan, A. Berman, Cryst. Growth Des. 5 (2005) 439. [62] H. Dlala, M. Almouk, S. Belgacem, P. Girard, D. Barjon, Eur. Phys. J. A. 2 (1998) 13. [63] A. F. Wells, Structural Inorganic Chemistry 5th edition, Oxford Science Publications (1984) ISBN 0-19-855370-6. [64] G. Hodes, J. Manasen, D. Cahen, Nature, 261 (1976) 403. [65] A. K. Abass, Solar Energy Mater. 17 (1988) 375. [66] D. Brqhweiler, R. Seifert, G. Calzaferri, J. Phys. Chem., B 103 (1999) 6397. [67] “Silver sulfide” [online] available http://en.wikipedia.org/wiki/Silver_sulfide. [68] “Silver(I) selenide” [online] available http://en.wikipedia.org/wiki/Silver(I)_selenide. [69] G. A. Wiegers, Am. Mineral. 56 (1971) 1882. [70] A. Boettcher, G. Haase, H. Z. Treupel, Angew. Phys. 7 (1955) 487. [71] B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang, Y. Xia, Adv. Funct. Mater. 12 (2002) 679. [72] F. Shimojo, H. Okazaki, J. Phys. Soc. Jpn. 62 (1993) 179. [73] P. Z. Ralphs, Phys. Chem. 31B (1936) 157. [74] M. C. S. Kumar, B. Pradeep, Semicond. Sci. Technol. 17 (2002) 261. [75] P. K. Khanna, B. K. Das, Mater. Lett. 58 (2004) 1030. [76] A. G. Abdullayev, R. B. Shafizade, E. S. Krupnikov, K. V. Kiriluk Thin Solid Films, 106 (1983) 175. [77] D. Grientschnig, W. Sitte, J. Phys. Chem. Solids 52 (1991) 805. [78] R. Daleven, R. Gill, J. Appl. Phys. 38 (1967) 753. [79] M. Ferhat, J. Nagao, Appl. Phys. Lett. 88 (2000) 813. [80] F. Kirchhoff, J. M. Holender, M. J. Gillan Physical Review B 54 (1996) 190. [81] K. L. Lewis, A.M. Pitt, T. Wyatt-Davies, J.R. Milward, Mater. Res. Soc. Symp. Proc. 374 (1994) 105. [82] G. Hodes, J.Manassen, D. Cahen, J. Appl. Electrochem. 7 (1977) 181. [83] P. Allongue, H. Cachet,M. Froment and R. Tenne, J. Electroanal. Chem. 269 (1989) 295. [84] A. W. Adamson, A. P. Gast, Physical chemistry of surfaces; 6Ed, Wiley, 1997. [85] B. E. Conway, R. E. White, J. O. Bockris, Modern Aspects of Electrochemistry, 16, 496. [86] P. Wachter, C. Schreiner, M. Zistler, D. Gerhard, P. Wasserscheid, H. J. Gores, Microchim. Acta 160 (2008) 125. [87] N. Murakami, M. Gratzel, Inorg. Chim. Acta 361 (2008) 572. [88] G. Hodes, J. Manassen, D. Cahen, J. Electrochem. Soc. 127 (1980) 544 . [89] Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, H. T. Chang, Adv. Energy Mater. 1 (2011) 259. [90] Y. L. Lee, Y. S. Lo, Adv. Funct. Mater. 19 (2009) 604. [91] “Optical air mass” [online] available http://www.tippens.info/TKB/Presentation.php?view=show&pageid=145. [92] “Sunlight” [online] available http://en.wikipedia.org/wiki/Sunlight. [93] W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, J. Phys. Chem. B 107 (2003) 1798. [94] G. Liu, W. Jaegermann, J. He, V. Sundström, L. Sun, J. Phys. Chem. B 106 (2002) 5814. [95] Y. Xu, M. A. A. Schoonen, Am. Mineral. 85 (2000) 543. [96] “Refluxing” [online] available http://www.chem.wisc.edu/areas/organic/orglab/tech/reflux.htm. [97] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA, 2005 ISBN 3-527-40428-7 pp. 140. [98] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA, 2005 ISBN 3-527-40428-7 pp. 151. [99] M. Grätzel, Prog. Photovolt. Res. Appl. 8 (2000) 171. [100] M. Shalom, S. Dor, S. Rühle, L. Grinis, A. Zaban, J. Phys. Chem. C 113 (2009) 3895. [101] H. Piller, E. D. Palik, “Cadmium Selenide (CdSe)” Handbook of Optical Constant of Solids II, ACADEMIC PRESS, INC, 1991 ISBN0-12-544422-2 pp. 564. [102] Editoral, Sol. Energy. Mater. Sol. Cells 92 (2008) 371. [103] H. J. Lee, J. Bang, J. Park, S. Kim, S. M. Park, Chem. Mater. 22 (2010) 5636. [104] Nalt. Bur. Stand. (U.S.), Circ. 539, 10 (1960) 51.
|