跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程韋智
研究生(外文):Wei-Chih Cheng
論文名稱:在感知無線電網路非同步跳頻序列碼之建構與分析
論文名稱(外文):Construction and Analysis of Asynchronous Channel-Hopping Sequences for Cognitive Radio Networks
指導教授:楊谷章
口試委員:張敏寬林茂昭趙啟超
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:41
中文關鍵詞:感知無線電跳頻序列碼無線通訊動態頻譜存取
外文關鍵詞:Cognitive radiochannel hopping sequencewireless transmissiondynamic spectrum access
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
除了設計跳頻碼以外,在感知無線電網路中找到良好的通訊方法以改善頻寬效益即分散通道負載也是重要的設計考量。在本論文中,我們提出了應用於感知無線電環境中新的”非同步” 跳頻序列碼,並檢驗了該碼之通道重疊、通道平均使用以及成對序列碼位移不變之特性除此之外,我們也推導、驗證並比較新提出之跳頻序列碼的通訊延遲,封包交換利用率以及封包交換利用率之變異數。我們也分析了新提出之跳頻序列碼在基於不同之封包碰撞迴避機制下,三個不同傳輸環境之效能表現。我們的研究結果顯示,新提出之跳頻序列碼擁有比現今其他非同步跳頻序列碼較短之序列碼周期、較大的碼之基數以及較低的封包交換利用率之變異數,因此能在感知無線電環境下達到更頻繁之通訊比率、更多使用者以及更穩定的封包流通量。

Besides designing channel-hopping (CH) sequences, finding good methods of communication rendezvous is important for improving spectral efficiency and alleviating traffic load of cognitive radio (CR) networks. In this thesis, new asynchronous-symmetric CH sequences are constructed and their (channel-overlap, even-channel-use, and pairwise shift-invariance) properties are investigated. Their operations in three transmission scenarios involving different collision-avoidance mechanisms are also analyzed and compared in terms of maximum time-to-rendezvous rate, rendezvous-success (RS) rate, and RS variance. Our study shows that the new sequences have shorter period, larger cardinality, and smaller RS variations that other CH sequences, thus supporting greater number of secondary users and more frequent, uniform rendezvous in CR networks.

Abstract ii
Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Outline of Thesis 1
Chapter 2 Preliminary material 4
2.1 Transimission environment 4
2.2 Definitions of Asynchronous CH Sequences 7
2.3 Design Criteria of CH Sequences 8
2.4 Performance metrics 9
Chapter 3 Construction and Properties of the ACHPSs 11
Chapter 4 Performance Models and Analysis 16
4.1 RS Rate Analysis 18
4.2 RS Variance Analysis 20
4.3 MTTR Analysis 22
Chapter 5 Numerical Results 23
5.1 RS Rate and Variance of Scenario 1 24
5.2 RS Rate and Variance of Scenario 2 and 3 28
Chapter 6 Conclusion 31
Appendix A 32
Appendix B 33
Appendix C 35
Appendix D 36
References 38


[1]H. Su and X. Zhang, “Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 118–129, Jan. 2008.
[2]C. Cormio and K.R. Chowdhury, “Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping,” Ad Hoc Netw., vol. 8, no. 4, pp. 430–438, Jun. 2010.
[3]B.F. Lo, I.F. Akyildiz, and A.M. Al-Dhelaan, “Efficient recovery control channel design in cognitive radio ad hoc networks,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4513–4526, Nov. 2010.
[4]M. Song, C. Xin, Y. Zhao, and X. Cheng, “Dynamic spectrum access: From cognitive radio to network radio,” IEEE Wireless Commun., vol. 18, no. 1, pp. 23–29, Feb. 2012.
[5]Y.-F. Zhang, G.-X. Yu, Q. Li, H.-D. Wang, X. Zhu, and B. Wang, “Channel-hopping-based communication rendezvous in cognitive radio networks,” IEEE/ACM Trans. Network., vol. 22, no. 3, pp. 889–891, Jun. 2014.
[6]K. Bian, J. Park, and R. Chen, “A quorum-based framework for establishing control channels in dynamic spectrum access networks,” in Proc., ACM MobiCom, pp. 25–36, Jun. 2009.
[7]H. Liu, Z. Lin, X. Chu and Y.W. Leung, “Jump-stay rendezvous algorithm for cognitive radio networks,” IEEE Trans. Parallel Distributed Sys., vol. 23, no. 10, pp. 1867–1881, Oct. 2012.
[8]Z. Lin, H. Liu, X. Chu, and Y.W. Leung, “Enhanced jump-stay rendezvous algorithm for cognitive radio networks,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1742–1745, Sep. 2013.
[9]G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel channelhopping schemes for cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 13, no. 2, pp. 407–421, Feb. 2014.
[10]C.-T. Ke and J.-P. Sheu, “A comment on ‘short channel hopping sequence approach to rendezvous for cognitive networks”’, IEEE Commun. Lett., vol. 18, no. 9, pp. 1631–1632, Sep. 2014.
[11]C.-M. Chao and H.-C. Tsai, “A channel-hopping multichannel MAC protocol for mobile ad hoc networks,” IEEE Trans. Veh. Technol, vol. 63, no. 9, pp. 4464–4475, Nov. 2014.
[12]I-H. Chuang, H.-Y. Wu, and Y.-H. Kuo, “A fast blind rendezvous method by alternate hop-and-wait channel hopping in cognitive radio networks,” IEEE Trans. Mobile Computing, vol. 13, no. 10, pp. 2171– 2184, Oct. 2014.
[13]C.-M. Chao, H.-Y. Fu, and L.-R. Zhang, “A fast rendezvous-guarantee channel hopping protocol for cognitive radio networks,” IEEE Trans. Veh. Technol, vol. 64, no. 12, pp. 5804–5816, Dec. 2015.
[14]C.-S. Chang, W. Liao and C.-M. Lien, “On the multichannel rendezvous problem: Fundamental limits, optimal hopping sequences, and bounded time-to-rendezvous,” Math. Operations Res., vol. 40, no. 1, pp. 1–23, Jan. 2015.
[15]G.-Y. Chang, J.-F. Huang, and Y.-S. Wang, “Matrix-based channel hopping algorithms for cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2755–2768, May 2015.
[16]C.-S. Chang, W. Liao, and T.-Y. Wu, “Tight lower bounds for channel hopping schemes in cognitive radio networks,” IEEE/ACM Trans. Networking, to be published, DOI: 10.1109/TNET.2015.2453403.
[17]J.-P. Sheu, C.-W. Su, and G.-Y. Chang, “Asynchronous quorum-based blind rendezvous schemes for cognitive radio networks,” IEEE Trans. Commun., vol. 64, no. 3, pp. 918–930, Mar. 2016.
[18]Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Jump-stay based channel hopping algorithm with guaranteed rendezvous for cognitive radio networks,” in Proc., IEEE INFOCOM, pp. 2444--2452, 10-15 April 2011.
[19]C.-C. Wu, and S.-H. Wu, “On bridging the gap between homogeneous and heterogeneous rendezvous schemes for cognitive radios,” in Proc., ACM MobiHoc, pp. 207--216, 2013.
[20]L. Chen, K. Bian, L. Chen, C. Liu, J.-M.J. Park, and X. Li. “A grouptheoretic framework for rendezvous in heterogeneous cognitive radio networks,” Proc., ACM MobiHoc, pp: 165–174, 2014.
[21]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11 Working Group, 1997.
[22]K. Choi and H. Liu, “Quasi-synchronous CDMA using properly scrambled Walsh codes as user-spreading sequences,” IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3609–3617, Sep. 2010.
[23]D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 4, pp. 2017–2046, 4th quarter 2015.
[24]J.C. Fang and G.D. Kondylis, “A synchronous, reservation based medium access control protocol for multihop wireless networks,” in Proc., IEEE WCNC, vol. 2, pp. 994–998, 20 Mar. 2003.
[25]K. Lee, P. Mitchell, D. Grace, “Energy efficient distributed reservation multiple access with adaptive switching requests for wireless networks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 259– 267, Jan. 2014
[26]K.W. Shum, C.S. Chen, C.W. Sung, and W.S. Wong, “Shift-invariant protocol sequences for the collision channel without feedback,” IEEE Trans. Info. Theory, vol. 55, no. 7, pp. 3312–3322, Jul. 2009.
[27]G.-C. Yang and W.C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Norwood, MA: Artech House, 2002.
[28]W.C. Kwong and G.-C. Yang, Optical Coding Theory with Prime, New York: CRC Press, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊