跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳念祖
研究生(外文):CHEN NIEN CHU
論文名稱:蛇紋石生態系中巨量元素與微量元素在土壤與植物體之含量探討
論文名稱(外文):Macro and trace element contents in soils and plants of a serpentine ecosystem
指導教授:許正一許正一引用關係
指導教授(外文):HSEU ZENG YEI
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:83
中文關鍵詞:蛇紋岩土壤超基性岩類重金屬植物有效性
外文關鍵詞:Serpentinitic soilultramafic rockHeavy metalsPhytoavailability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:628
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
蛇紋岩土壤為超基性岩類母質所風化,其土壤有效性氮、磷、鉀偏低,Ca/Mg比值偏低,並含有高濃度的鉻、鎳、鈷等重金屬,其濃度可遠超過台灣的土壤污壤管制標準,而矽和鈣則含量較低,因此使得一般植物不易生長。蛇紋岩土壤的重金屬雖非人為污染所致,但一樣會影響生態環境與人體健康,因此本論文採取花蓮萬榮某一廢棄蛇紋岩礦場之7種優勢植物及根域土壤,這7種植物為豬屎豆、五節芒、銀合歡、咸豐草、葛藤、印度草木犀及加拿大蓬等。研究目的為探討蛇紋石生態系中巨量與微量元素在土壤與植物中的元素含量,並以序列萃取法及單一試劑萃取法測定不同型態之重金屬,以了解植物吸收重金屬之含量及不同部位的吸收量,評估植物之元素組成與植物有效性。研究結果顯示,多數蛇紋岩土壤之Ca/Mg比值小於1.0,為典型蛇紋岩土壤的特徵,而土壤中鉻的含量為559-723 mg/kg,鎳為691-1220 mg/kg,皆已超過現行的土壤污染管制標準甚多。在重金屬型態劃分中,鉻與鎳主要被固定在礦物晶格內,故集中在殘餘態,而元素間移動性鎳大於鉻,在DTPA萃取量方面,仍是鎳高於鉻,其與序列萃取之型態分佈趨勢差異相符,表示蛇紋岩土壤中的鉻不易被植物所攝取,而HCl萃取也與DTPA萃取趨勢相似。受到蛇紋岩土壤母質特性之影響,植體中重金屬濃度也較一般植物高,錳含量為10.4-69.4 mg/kg,鉻含量為6.08-36.9 mg/kg,鎳含量為8.52-51.4 mg/kg,植體中的錳與鉻大部分累積於根部,而鎳則明顯累積在葉片,顯示本研究區植物可能具有潛力成為鎳累積之植物,因為葉片之於根部之鎳轉移係數可大於1.0,其中又以豬屎豆的2.27最高。
Serpentinitic soils from ultramafic parent rocks are characterized by low availability of N, P, K, and Ca/Mg and extremely high contents of heavy metals like Cr, Co, and Ni. These metal levels in the serpentinitic soils can be much higher than the soil pollution control standards (SPCS) of Taiwan. Additionally, low contents of Si and Ca causes to poor growth of general plants. The heavy metals in the serpentinitic soils are not anthropogenic, but they have potential risk to ecosystem and human health. Therefore, this study selected an abandoned site of serpentine at Wang-Ron, Hualiean to collect 7 species of plant and the corresponding soils in the root zone. The plants include Crotalaria zanzibirica, Miscanthus floridulus, Leucaena leucocephala, Bidens pilosa, Dolichos lobatus Willd., Melilotus indicus and Conyza Canadensis. The purposes are to explore element contents in the soils and plants, to fractionate heavy metals by sequential extraction and single extraction, to understand the plant uptake of the elements and their compartmentation in different plant tissues, and evaluate the phyto-availability. The experimental results indicated that the Ca/Mg ratio was lower than 1.0 in most cases of soils and reflected the typical characteristics of serpentinitic soils. The concentrations of Cr and Ni ranged from 59 to 723 mg/kg and from 691 to 1220 mg/kg respectively, which greatly exceeded the SPCS. Regarding solid fractionation of Cr and Ni, the dominant phases of Cr and Ni are the residual forms which are fixed in the mineral framework. The DTPA- and HCl-extractable amounts of Ni was higher than that of Cr, which difference in trend betwee elements is the same to that by sequential extraction. Therefore, Cr is hard to be absorbed by the plants. The heavy metal contents in the studied plants were higher than those in the other plants. The concentrations of Mn, Cr, and Ni in the plant ranged from 10.4 to 69.4 mg/kg, from 6.08 to 36.9 mg/kg, and from 8.52 to 51.4 mg/kg. In addition, most Mn and Cr in the plant accumulated in the root, while Ni was in the leaves. This study elucidates that the plant may be potential accumulators of Ni, because the transfer factor (TF, leaf/root) of Ni is higher than 1.0, particullarly for Crotalaria zanzibirica with TF 2.27.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 IX
第一章、前言 1
1.1研究緣起 1
1.2研究目的 2
第二章、文獻回顧 3
2.1 蛇紋岩土壤成因與分佈 3
2.2 蛇紋岩土壤之特性 4
2.3 一般土壤之重金屬生物有效性指標 6
2.3.1 單一化學試劑萃取法 6
2.3.2 序列萃取法 7
2.4 土壤中重金屬型態與植物有效性 9
2.4.1 植物吸收土壤中重金屬之類型 9
2.5 蛇紋岩土壤植物之元素吸收特徵 10
2.6 從蛇紋石生態系中篩選重金屬超級累積植物 11
2.6.1 鎳的超級累積植物 12
2.6.2 鉻的超級累積植物 13
第三章 材料與方法 15
3.1 研究區域概況 15
3.2 氣候 16
3.3 植被 17
3.4土壤採集與分析 20
3.4.1 採樣與前處理 20
3.4.2 土壤性質分析 20
3.4.3 重金屬之單一化學試劑萃取 23
3.4.4 序列萃取 24
3.5 土壤礦物組成鑑定 25
3.6 掃描式電子顯微鏡(Scanning electron microscope) 26
3.7 植體分析 26
第四章 結果與討論 28
4.1 土壤基本性質 28
4.1.1 土壤質地 28
4.1.2 土壤化學性質 28
4.2 元素全量 30
4.3 游離性金屬元素抽出量 35
4.4單一試劑萃取之重金屬濃度 38
4.4.1 0.1N HCl 38
4.4.2 0.005M DTPA 40
4.5 鐵、錳、鉻、鎳、鈷之結合型態分佈 42
4.6 植體元素含量 48
4.7 土壤礦物組成 62
4.7.1 XRD繞射鑑定 62
4.7.2 SEM/EDS礦物鑑定 65
第五章、結論 66
參考文獻 67
附錄 77
作者介紹 83


王銀波、廖乾華,1999,國外農作物中重金屬之限量標準,台灣省農業藥物毒物試驗所,農作物中重金屬監測基準資料之建立,第61 - 72頁。
克斯忠,1988,台灣地區蛇紋石結晶構造與礦物化學之研究,國立台灣大學地質研究所碩士論文。
吳景翰,2009,不同施肥條件下蛇紋石土壤中重金屬之溶出特性與水稻吸收量,國立屏東科技大學環境工程與科學研究所碩士論文,78頁。
張英琇,2007,海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質,國立屏東科技大學環境工程與科學研究所碩士論文,82頁。
張仲民。1991。作物之營養與肥料,徐氏基金會,3 - 5頁。
陳映如,2001,花蓮瑞穗地區蛇紋岩及其角礫岩之變質岩石學,國立成功大學地球科學研究所碩士論文,117頁。
陳尊賢,2005,台灣土壤及地下水污染整治之回顧與展望研討會論文集,91頁。
陳肇夏,1998,台灣的變質岩,台灣的地質之十一,經濟部中央地質調查所編印,356頁。
張簡水紋,1995,電鍍廢水對土壤重金屬聚積型態與作物生長之影響,國立中興大學土壤學研究所碩士論文,134頁。
盧國新,1997,化學復育法對污染土壤重金屬溶出及作物吸收重金屬之影響,國立台灣大學農業化學研究所碩士論文,102頁。
Adriano, D. C., 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. 2nd ed. Springer, New York.
Adriano, D. C., W. W. Wenzel, J. Vangronsveld, and N. S. Bolan, 2004. Role of assisted natural remediation in environmental cleanup. Geoderma. 122: 121-142.
Adriano, D. C., 2001. Trace elements in terrestrial environments: biogeochemistry. bioavailability and risks of metals. 2nd ed. Springer, New York.
Adriano, D. C., 1986. Trace elements in the terrestrial environment. New York: Springer-Verlag.
Adriano, D. C., 2001. Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavilability, and Risks of Metals.Savannah River Ecology Laboratory University of Georgia. Aitken,SC 29802 .USA.
Alexander, E. B., W. E. Wildman, and W. C. Lynn, 1985. Ultramafic (serpentinitic) mineralogy class. Mineral classification of soil, special Publication 16. J. A. Kittruck, ed. SSSA, Madison, Wisconsin, USA. 135-146.
Alexander, E. B., 1988. Morphology, fertility and classification of productive soils on serpentinused peridotite in California. Geoderma. 41: 337-351.
Alexander, E. B., Adamson, C., Zinke, P. J., Graham, R. C., 1989. Soils and conifer forest productivity on serpentinized peridotite of the Trinity Ophiolite, California. Soil Science. 148: 412–423.
Alexander, E. B., Ellis, C. C., Burke, R., 2007a. A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains, USA. Soil Science. 172: 565–576.
Alloway, B. J., 1990. Heavy Metals in Soils. John Wiley & Sons. Inc. N.Y. 339p.
Alloway, B. J., 1995. Heavy metals in Soils. 2 nd ed. Blackie and Son Ltd., London. UK. 368pp.
Alloway, B. J., 1995. The origins of heavy metals in soils, In:Alloway,B.J.(ED), Heavy Metals in Soils. Blackie Academic and Professional, London 38-57pp.
Anderson, P. R., and T. H., Christensen, 1988. Distribution coefficients of Cd, Co, Ni, and Zn in soils. Soil Sci. 39: 15-22.
Baker, A. J. M., 1981. Accu, ulatators and excluders-Strategies in the response of plants to heavy metals. Journal of Plant Nutrition. 3: 643-654.
Baker, A. J. M., and R. R. Brooks, 1989. Terrestrial highter plants which hyperaccumulate metallic elements-a review of their distribution. ecology and phytochemistry. Biorecovery 1: 81-126.
Baker, D. E., and Amacher, M. C., 1982. Nickel, copper, zinc, and cadmium, In: Page, A. L., Miller, R. H., and Keeney, D. R. (eds.), Methods of Soil Analysis, Part II, Chemical and Microbiological Method, Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 323-336.
Becquer, T. C. Quantin, S. Rotte-Capet J. Ghandaja, C. Mustin and A. J. Herbillon, 2006. Sources of trace metals in Ferralsols in New Caledonia. Eur. J. Soil Sci. 57: 200-213.
Becquer, T. C. Quantin, M. Sicot, and J. P. Boudot, 2003. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 301: 251-261.
Berrow, M. L., and Burridge, J. C., 1991. Uptake, distribution and effects of metal compounds on plants. In: Merian, M. (Ed.), Metals and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance, CDH. Weinheim. p.339-410.
Bitton, G., Damro, B. L., Davidson, G. T., Davidson, J. M. (Eds.) Sludge–Health Risks of Land Application. Ann Arbor Sci. Publ., Ann Arbor, MI, USA. pp. 59-83.
Blake, G. R., and Hartge, K. H., 1986. Bulk density, In: Klut, A. et al. (eds.), Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 363-375.
Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin, 1997. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ. Sci. Technol. 31: 860-865.
Bonifacio, E. and E. Barberis, 1999. Phosphorus dynamics during pedogenesis on serpentine. Soil Sci. 164: 960-968.
Bose, S., and Bhattacharyya, A. K., 2008. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere. 70: 1264-1272.
Brady, K. U., Kruckeberg, A. R., Bradshaw Jr., H. D., 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics. 36: 243-266.
Brooks, R. R., 1987. Serpentine and its Vegetation. Dioscorides Press, Portland.
Brooks, R. R., R. S. Morrison, R. D. Reeves, T. R. Dudley, and Y. Akman, 1979. Hyperaccumulation of nickel by Alyssum Linneaud (Cruciferas). Proceeding of Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 203: 387-403.
Bulmer, C. E. and Lavkulich, L. M., 1994. Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Colombia. Canadian Journal of Soil Science 74: 165-177.
Burt, R., Fillmore, M., Wilson, M. A., Gross, E. R., Langridge, R. W., and Lammers, D. A., 2001. Soil properties of selected pedons on ultramafic rocks in Klamath mountains, Oregon. Communications in Soil Science and Plant Analysis. 32: 2145-2175.
Caillaud, J., Proust, D., Righi, D., 2006. Weathering sequences of rock-forming minerals in a serpentinite: Influence of microsystems on clay mineralogy. Clays and clay minerals. 54: 87-100.
Caillaud, J., D. Proust, D. Righi, and F. Martin, 2004. Fe-rich clays in a weathering profile developed from serpentinite. Clays Clay Mineral. 52: 779-791.
Cajuste, L.J., Cruz-Diaz, J., Garcia-Osorio, C., 2000. Extraction of heavy metals from contaminated soils: I. Sequential extraction in surface soils and their relationships to DTPA extractable metals and metal plant uptake. Journal of Environmental Science and Health, Part A: Toxic-Hazardous Substances and Environmental Engineering. 35: 1141-1152.
Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., Baker, A. J. M., 1997. Phytoremediation of soil metals. Current opinion in biotechnology. 8: 279-284.
Chaney, R. L., 1980. Health risks associated with toxic metals in Municipal sludge.
Chapman, H. D., 1966. Diagonstic Criteria for Plants and Soils. University of California,Division of Agricultural Sciences.
Chen, M., and Ma, L. Q., 1998. Comparison of four USEPA digestion methodsfor trace metal analysis using certified and Florida soils. J. Environ.Qual. 27: 1294–1300.
Cheng, C. H., Jien, S. H. Tsai, H., Chang, Y. H., Chen, Y. C., and Hseu, Z. Y., 2009. Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science. 174: 283-291.
Chino, M., 1981. Uptake-transport of toxic metals in rice plants, In: Kakuzo, K., Yamane, I.,(eds), Heavy metal pollution on soil of Japan. Japan Scientific Societies Press, Tokyo. 81-89.
Ciešliñski, G., van Rees, K. C. J., Szmigielska, A. M., Krishnamurti, G. S. T., Huang, P. M., 1998. Low-molecular-weight organic acids in rhizosphere soils of durum barley and their effect on cadmium bioaccumulation. Plant and Soil. 203:109-117.
Derome, J, and Lindroos, A. J., 1998. Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter, SW Finland. Environmental pollution 99: 225-232.
Dixon, J. B., 1989. Kaolin and serpentine group minerals. P. 467-526. J.B. Dixon and S.B. Weed (eds.), Minerals in soil environments, 2nd Edition. SSSA Book Series No. 1. SSSA, Madision, WI.
Ebbs, S. D., and Kochian, L.V., 1997. Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. J. Environ. Qual. 26: 776–781.
Fang, J., Wen, B., Shan, X. Q., Lin, J. M., Owens, G., 2007. Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability Application to non-contaminated soils. Environmental Pollution. 150: 209-217.
Fang, G. C., Wu, Y.S., Lee, W.J., Chou, T.Y., Lin, I.C., 2007. Ambient air particulates, metallic elements, dry deposition and concentrations at Taichung Airport, Taiwan. Atmospheric research. 84: 280-289.
Feng, M. H., Shan, X. Q., Zhang, S. Z., Wen, B., 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution. 137: 231-240.
Foy, C. D., Scott, B. J., Fisher, J. A., 1988. Genetic differences in plant tolerance to manganese toxicity.In: Graham, R. D., Hannam, R. J., and Uren, N. C.,(Eds.), Manganese in soils and plants Dordrecht. Kluwer Academic Publishers. p.293 –307.
Gardner, W. H., and Hartge, K. H., 1986. Bulk density, In: Klut, A. et al. (eds.), Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 383-411.
Gee, G. W., and Baude, J. W., 1986. Particle-size analysis. In: A. Klut et al. (eds.), Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 383-411.
Ghaderian, S. M., A. Mohtadi, M. R. Rahiminejad, and A. J. Baker, 2007. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution 145: 293–298.
Hammer, D.,and Keller, C., 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. Journal of Environmental Quality. 31: 1561-1569.
Hossner, L. R., 1996. Dissolution for Total Elemental Analysis, In: Bigham, J. M. (eds.), Methods of Soil Analysis, Part 3, Chemical Methods, Soil Science Society of America Book Series No. 5, Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 49-64.
Houba, V. J. G., Lexmond, T. M., Novozamsky, I., Van der Lee, J. J., 1996. State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment. 178: 21-28.
Hseu, Z. Y., Tsai, H., His, H. C., and Chen, Y. C., 2007. Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals. 55: 389-401.
Hseu, Z.Y., 2006. Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil science. 171: 341-353.
Hsiao, K. H., Bao, K. H., Wang, S. H., and Hseu, Z. Y., 2009. Extractable concentrations of cobalt from serpentine soils with several single-extraction procedures. Communications in Soil Science and Plant Analysis. 40: 13: 2200-2224.
Johnston, W. R. and Proctor, J., 1981. Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. Journal of Ecology. 69: 855-869.
Kabata-Pendias, A., and Pendias, P., 2001. Trace Elements in soils and Plants. CRC Press, New york. 413p.
Kabata-Pendias, A., 1993, Behavioural properties of trace metals on soils, Applied Geochemistry. 2: 3-9.
Kaupenjohann, M., and W. Wilcke, 1995. Heavy metal release from a serpentine soil using a pH-sat technique. Soil Sci. Soc. Am. J. 59: 1027-1031.
L’Huillier, L., and S. Edighoffer, 1996. Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant and Soil. 186: 255-264.
Lebourg, A., Sterckeman, T., Ciesielski, H., Proix, N., Gomez, A., 1998. Estimation of soil trace metal bioavailability using unbuffered salt solutions: degree of saturation of polluted soil extracts. Environmental Technology. 19: 243-252.
Lee, B. D., R. C. Graham, T. E. Laurent, C. Amrhein, and R. M. Creasy, 2001. Spatial distribution of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Sci. Soc. Am. J. 65: 1183-1196.
Lee, B. D., Graham, R. C., Laurent, T. E., Amrhein, C., 2004. Pedogenesis in a wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma. 118: 303–320.
Lee, B. D., S. K. Sears, R. C. Graham, C. Amrhein, and H. Vali, 2003. Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Sci. Soc. Am. J. 67: 1309-1317.
L’Huillier, L., and S. Edighoffer (1996) Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant Soil. 186:255-264.
Lindsay, W. L., and Norvell, W. A., 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42: 421-428.
Lyon, G. L., Brooks, R. R., Peterson, P. J., Butler, G. W., 1968. Trace elements in a New Zealand serpentine flora. Plant and Soil. 29: 225-240.
Marchiol, L., Assolari, S., Sacco, P., and Zerbi, G, 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ, pollut. 132: 21-27.
Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., Morel, J. L., 2006. Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136: 28–37.
McGrath, S. P., 1995. Chromium and nickel. In: Alloway, B.J. (Ed.),Heavy Metals in Soils. Blackie Academic and Professional, London. pp.152–178.
McKeague, J. A., and Day, J. H., 1966. Dithionite and oxalate extractable Fe and Al as acids in different various classes of soils. Canadian Journal of Soil Science. 46: 13-22.
Mclean, E. O., 1982. Soil pH and lime requirement, In: Page, A. L. et al. (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties, Agronomy monograph No. 9, Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA. 199-244.
Meers, E., Samson, R., Tack, F. M. G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., and Verloo, M. G., 2007. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environmental and Experimental Botany. 60: 385-396.
Mehra, O. P., and Jackson, M. L., 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Miner. 7: 317-327.
Minguzzi, C., and Vergnano, O.,1948. The nickel content of the ash of Alyssum bertolonii Desv. Botanical and geochemical considerations. Atti Soc.Tosc.Sci.Nat.,55: 49-77(in Italian).
Mortvedt, J.J., and Giordano, P. M ., 1975. Response of corn to zinc and chromium in municipal wastes applied to soil. Journal of environmental quality. 4: 170-174.
Mossop, K. F., and C. M. Davidson, 2003. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta. 478: 111-118.
Nakashima, T., Okada, T., Asahi, J., Yamashita, A., Kawai, K., Kasai, H., Matsuno, K., Gamou, S., and Hirano, T., 2008. 18-Hydroxydeoxyguanosine generated in the earthworm Eisenia fetida grown in metal-containing soil. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 654: 38–144.
Nelson, D. W., and Sommer, L. E., 1982. Total carbon. Organic carbon, and organic matter, In: Page, A. L. et al. (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy monograph No. 2. Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA. 539-577.
Norvell, W. A., 1984. Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Sci Soc Am J.48: 1285-1292.
Novozamsky, I., Lexmond, T. H. M., and Houba, V. J. G., 1993. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plant. Int. J. Environ. Anal. Chem. 51: 47-58.
O’Dell, R. E. and V. P. Claassen, 2006. Serpentine and nonserpentine Achillea millefolium accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant Soil. 279: 253-269.
Otero, X. L., M.A. Huerta-Diaz, and F. Macias, 2000. Heavy metal geochemistry of saltmarsh soils from the Ria of Ortigueira (mafic and ultramafic areas, NW Iberian Peninsula)
Oze, C., Bird, D. K., and Fendorf, S., 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. The National Academy of Sciences of the USA. 104: 6544-6549.
Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G., 2004. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science. 304: 67-101.
Proctor, J., and Woodell, S., 1975. The ecology of serpentine soils. Advances in Ecological Research. 9: 255-366.
Proctor, J., 1999. Toxin, mutrient shortages and droughts: the serpentine challenge. Trends Ecological Evol. 14: 334-335.
Quantin, C., Becqure, T., and Berthelin, J., 2002a. Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. Comptes Rendus de l'Acadâemie des sciences. 334: 273-278.
Quantin, C., Becquer, T., Rouiller, J.H., Berthelin, J., 2002b. Redistribution of metals in a new Caledonia ferralsol after microbial weathering. Soil Science Society of America Journal. 66: 1797- 1804.
Rabenhorst, M. C., J. E. Foss, and D. S. Fanning, 1982. Genesis of Maryland soils formed from serpentine. Soil Science Society of America Journal. 46: 607-616.
Reeves, R. D., 1992. The hyperaccumulation of nickel by serpentine plant. UK 193-229.
Reeves, R. D., Baker, A. J. M., Romero, R., 2007. The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance. J. Geochem. Explor. 93: 153-159.
Reeves, R. D., and R. R. Brooks, 1983. European species of Thlaspi L. (Crucifease) as indicators of nickel and zinc. Journal of Geochemical Exploration. 18: 275-283.
Robinson, B. H., Brooks, R. R., Clothier, B. E., 1999. Soil Amendments affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation. Annals of botany. 84: 689-694.
Schreier, H., J. A. Omueti, and L. M. Lavkulich, 1987. Weathering processes of asbestos-rich serpentinitic sediments. Soil Sci. Soc. Am. J. 51: 993-999.
Su, D. C., J. W. C. Wong, and H, Jagadeesan, 2004. Implications of rhizospheric heavy metals and nutrients for the growth of alfalfa in sludge amended soil. Chemosphere. 56: 957-965.
Tessier, A., P. G. C. Campbell, and M. Bisson, 1979. Sequential extraction procedure for the speciation of particular trace metals. Anal. Chem. 51: 844-851.
Thomas, G. W., 1982. Exchangeable cation, In: A. L. Page et al. (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy monograph No. 9. Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA. 159-165.
Tu C., Zheng C. R., Chen H. M., 2000. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere 41: 133-138.
Turitzin, S. N., 1982. Nutrient limitations to plant growth in a California serpentine grassland. American Midland Naturalist. 107: 95-99.
Ure, A. M., P. H. Quevauviller, H. Muntau, and B. Griepink, 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communites. Int. J. Environ. Anal. Chem. 51: 135-151.
Vangronsveld, J., and S.D. Cunninggham, 1998. Introduction to the concepts. In: Vangronsveld, J., and S.D. Cunninggham (Eds.), Metal contaminated soils: In-situ Inactivation and phytorestoration. Springer Verlag, Berlin. 219-225.
Wang, C.C., Chang, C.Y., Chen, C.Y., 2001. Study on metal ion adsorption of bifunctional chelating/ion-exchange resins. Macromolecular chemistry and physics. 202: 882-890.
Wei, S., Zhou, Q., and Koval, P.V., 2006. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci. Total Environ. 369: 441-446.
Wenzel, W. W., and Jockwer, F., 1999. Accumulation of heave metals in plants grown on mineralized soils of the Austrian Alps. Environ. Pollut. 104: 145-155.
Wild, H,1974. Indigenous plant and chromium in Rhodesia.Kirkia 9: 233-241.
Zbigniew Marzec, 2004. Alimentary chromium, nickel, and selenium intake of adults in Poland estimated by analysis and calculations using the duplicate portion technique. Food/Nahrung. 48: 47–52.
Zhao, F. J., Lombi, E., and McGrath, S. P., 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil. 249: 37-43.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊