王銀波、廖乾華,1999,國外農作物中重金屬之限量標準,台灣省農業藥物毒物試驗所,農作物中重金屬監測基準資料之建立,第61 - 72頁。
克斯忠,1988,台灣地區蛇紋石結晶構造與礦物化學之研究,國立台灣大學地質研究所碩士論文。
吳景翰,2009,不同施肥條件下蛇紋石土壤中重金屬之溶出特性與水稻吸收量,國立屏東科技大學環境工程與科學研究所碩士論文,78頁。張英琇,2007,海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質,國立屏東科技大學環境工程與科學研究所碩士論文,82頁。張仲民。1991。作物之營養與肥料,徐氏基金會,3 - 5頁。
陳映如,2001,花蓮瑞穗地區蛇紋岩及其角礫岩之變質岩石學,國立成功大學地球科學研究所碩士論文,117頁。
陳尊賢,2005,台灣土壤及地下水污染整治之回顧與展望研討會論文集,91頁。
陳肇夏,1998,台灣的變質岩,台灣的地質之十一,經濟部中央地質調查所編印,356頁。
張簡水紋,1995,電鍍廢水對土壤重金屬聚積型態與作物生長之影響,國立中興大學土壤學研究所碩士論文,134頁。盧國新,1997,化學復育法對污染土壤重金屬溶出及作物吸收重金屬之影響,國立台灣大學農業化學研究所碩士論文,102頁。Adriano, D. C., 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. 2nd ed. Springer, New York.
Adriano, D. C., W. W. Wenzel, J. Vangronsveld, and N. S. Bolan, 2004. Role of assisted natural remediation in environmental cleanup. Geoderma. 122: 121-142.
Adriano, D. C., 2001. Trace elements in terrestrial environments: biogeochemistry. bioavailability and risks of metals. 2nd ed. Springer, New York.
Adriano, D. C., 1986. Trace elements in the terrestrial environment. New York: Springer-Verlag.
Adriano, D. C., 2001. Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavilability, and Risks of Metals.Savannah River Ecology Laboratory University of Georgia. Aitken,SC 29802 .USA.
Alexander, E. B., W. E. Wildman, and W. C. Lynn, 1985. Ultramafic (serpentinitic) mineralogy class. Mineral classification of soil, special Publication 16. J. A. Kittruck, ed. SSSA, Madison, Wisconsin, USA. 135-146.
Alexander, E. B., 1988. Morphology, fertility and classification of productive soils on serpentinused peridotite in California. Geoderma. 41: 337-351.
Alexander, E. B., Adamson, C., Zinke, P. J., Graham, R. C., 1989. Soils and conifer forest productivity on serpentinized peridotite of the Trinity Ophiolite, California. Soil Science. 148: 412–423.
Alexander, E. B., Ellis, C. C., Burke, R., 2007a. A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains, USA. Soil Science. 172: 565–576.
Alloway, B. J., 1990. Heavy Metals in Soils. John Wiley & Sons. Inc. N.Y. 339p.
Alloway, B. J., 1995. Heavy metals in Soils. 2 nd ed. Blackie and Son Ltd., London. UK. 368pp.
Alloway, B. J., 1995. The origins of heavy metals in soils, In:Alloway,B.J.(ED), Heavy Metals in Soils. Blackie Academic and Professional, London 38-57pp.
Anderson, P. R., and T. H., Christensen, 1988. Distribution coefficients of Cd, Co, Ni, and Zn in soils. Soil Sci. 39: 15-22.
Baker, A. J. M., 1981. Accu, ulatators and excluders-Strategies in the response of plants to heavy metals. Journal of Plant Nutrition. 3: 643-654.
Baker, A. J. M., and R. R. Brooks, 1989. Terrestrial highter plants which hyperaccumulate metallic elements-a review of their distribution. ecology and phytochemistry. Biorecovery 1: 81-126.
Baker, D. E., and Amacher, M. C., 1982. Nickel, copper, zinc, and cadmium, In: Page, A. L., Miller, R. H., and Keeney, D. R. (eds.), Methods of Soil Analysis, Part II, Chemical and Microbiological Method, Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 323-336.
Becquer, T. C. Quantin, S. Rotte-Capet J. Ghandaja, C. Mustin and A. J. Herbillon, 2006. Sources of trace metals in Ferralsols in New Caledonia. Eur. J. Soil Sci. 57: 200-213.
Becquer, T. C. Quantin, M. Sicot, and J. P. Boudot, 2003. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 301: 251-261.
Berrow, M. L., and Burridge, J. C., 1991. Uptake, distribution and effects of metal compounds on plants. In: Merian, M. (Ed.), Metals and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance, CDH. Weinheim. p.339-410.
Bitton, G., Damro, B. L., Davidson, G. T., Davidson, J. M. (Eds.) Sludge–Health Risks of Land Application. Ann Arbor Sci. Publ., Ann Arbor, MI, USA. pp. 59-83.
Blake, G. R., and Hartge, K. H., 1986. Bulk density, In: Klut, A. et al. (eds.), Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 363-375.
Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin, 1997. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ. Sci. Technol. 31: 860-865.
Bonifacio, E. and E. Barberis, 1999. Phosphorus dynamics during pedogenesis on serpentine. Soil Sci. 164: 960-968.
Bose, S., and Bhattacharyya, A. K., 2008. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere. 70: 1264-1272.
Brady, K. U., Kruckeberg, A. R., Bradshaw Jr., H. D., 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics. 36: 243-266.
Brooks, R. R., 1987. Serpentine and its Vegetation. Dioscorides Press, Portland.
Brooks, R. R., R. S. Morrison, R. D. Reeves, T. R. Dudley, and Y. Akman, 1979. Hyperaccumulation of nickel by Alyssum Linneaud (Cruciferas). Proceeding of Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 203: 387-403.
Bulmer, C. E. and Lavkulich, L. M., 1994. Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Colombia. Canadian Journal of Soil Science 74: 165-177.
Burt, R., Fillmore, M., Wilson, M. A., Gross, E. R., Langridge, R. W., and Lammers, D. A., 2001. Soil properties of selected pedons on ultramafic rocks in Klamath mountains, Oregon. Communications in Soil Science and Plant Analysis. 32: 2145-2175.
Caillaud, J., Proust, D., Righi, D., 2006. Weathering sequences of rock-forming minerals in a serpentinite: Influence of microsystems on clay mineralogy. Clays and clay minerals. 54: 87-100.
Caillaud, J., D. Proust, D. Righi, and F. Martin, 2004. Fe-rich clays in a weathering profile developed from serpentinite. Clays Clay Mineral. 52: 779-791.
Cajuste, L.J., Cruz-Diaz, J., Garcia-Osorio, C., 2000. Extraction of heavy metals from contaminated soils: I. Sequential extraction in surface soils and their relationships to DTPA extractable metals and metal plant uptake. Journal of Environmental Science and Health, Part A: Toxic-Hazardous Substances and Environmental Engineering. 35: 1141-1152.
Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., Baker, A. J. M., 1997. Phytoremediation of soil metals. Current opinion in biotechnology. 8: 279-284.
Chaney, R. L., 1980. Health risks associated with toxic metals in Municipal sludge.
Chapman, H. D., 1966. Diagonstic Criteria for Plants and Soils. University of California,Division of Agricultural Sciences.
Chen, M., and Ma, L. Q., 1998. Comparison of four USEPA digestion methodsfor trace metal analysis using certified and Florida soils. J. Environ.Qual. 27: 1294–1300.
Cheng, C. H., Jien, S. H. Tsai, H., Chang, Y. H., Chen, Y. C., and Hseu, Z. Y., 2009. Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science. 174: 283-291.
Chino, M., 1981. Uptake-transport of toxic metals in rice plants, In: Kakuzo, K., Yamane, I.,(eds), Heavy metal pollution on soil of Japan. Japan Scientific Societies Press, Tokyo. 81-89.
Ciešliñski, G., van Rees, K. C. J., Szmigielska, A. M., Krishnamurti, G. S. T., Huang, P. M., 1998. Low-molecular-weight organic acids in rhizosphere soils of durum barley and their effect on cadmium bioaccumulation. Plant and Soil. 203:109-117.
Derome, J, and Lindroos, A. J., 1998. Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter, SW Finland. Environmental pollution 99: 225-232.
Dixon, J. B., 1989. Kaolin and serpentine group minerals. P. 467-526. J.B. Dixon and S.B. Weed (eds.), Minerals in soil environments, 2nd Edition. SSSA Book Series No. 1. SSSA, Madision, WI.
Ebbs, S. D., and Kochian, L.V., 1997. Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. J. Environ. Qual. 26: 776–781.
Fang, J., Wen, B., Shan, X. Q., Lin, J. M., Owens, G., 2007. Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability Application to non-contaminated soils. Environmental Pollution. 150: 209-217.
Fang, G. C., Wu, Y.S., Lee, W.J., Chou, T.Y., Lin, I.C., 2007. Ambient air particulates, metallic elements, dry deposition and concentrations at Taichung Airport, Taiwan. Atmospheric research. 84: 280-289.
Feng, M. H., Shan, X. Q., Zhang, S. Z., Wen, B., 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution. 137: 231-240.
Foy, C. D., Scott, B. J., Fisher, J. A., 1988. Genetic differences in plant tolerance to manganese toxicity.In: Graham, R. D., Hannam, R. J., and Uren, N. C.,(Eds.), Manganese in soils and plants Dordrecht. Kluwer Academic Publishers. p.293 –307.
Gardner, W. H., and Hartge, K. H., 1986. Bulk density, In: Klut, A. et al. (eds.), Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 383-411.
Gee, G. W., and Baude, J. W., 1986. Particle-size analysis. In: A. Klut et al. (eds.), Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 383-411.
Ghaderian, S. M., A. Mohtadi, M. R. Rahiminejad, and A. J. Baker, 2007. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution 145: 293–298.
Hammer, D.,and Keller, C., 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. Journal of Environmental Quality. 31: 1561-1569.
Hossner, L. R., 1996. Dissolution for Total Elemental Analysis, In: Bigham, J. M. (eds.), Methods of Soil Analysis, Part 3, Chemical Methods, Soil Science Society of America Book Series No. 5, Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 49-64.
Houba, V. J. G., Lexmond, T. M., Novozamsky, I., Van der Lee, J. J., 1996. State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment. 178: 21-28.
Hseu, Z. Y., Tsai, H., His, H. C., and Chen, Y. C., 2007. Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals. 55: 389-401.
Hseu, Z.Y., 2006. Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil science. 171: 341-353.
Hsiao, K. H., Bao, K. H., Wang, S. H., and Hseu, Z. Y., 2009. Extractable concentrations of cobalt from serpentine soils with several single-extraction procedures. Communications in Soil Science and Plant Analysis. 40: 13: 2200-2224.
Johnston, W. R. and Proctor, J., 1981. Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. Journal of Ecology. 69: 855-869.
Kabata-Pendias, A., and Pendias, P., 2001. Trace Elements in soils and Plants. CRC Press, New york. 413p.
Kabata-Pendias, A., 1993, Behavioural properties of trace metals on soils, Applied Geochemistry. 2: 3-9.
Kaupenjohann, M., and W. Wilcke, 1995. Heavy metal release from a serpentine soil using a pH-sat technique. Soil Sci. Soc. Am. J. 59: 1027-1031.
L’Huillier, L., and S. Edighoffer, 1996. Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant and Soil. 186: 255-264.
Lebourg, A., Sterckeman, T., Ciesielski, H., Proix, N., Gomez, A., 1998. Estimation of soil trace metal bioavailability using unbuffered salt solutions: degree of saturation of polluted soil extracts. Environmental Technology. 19: 243-252.
Lee, B. D., R. C. Graham, T. E. Laurent, C. Amrhein, and R. M. Creasy, 2001. Spatial distribution of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Sci. Soc. Am. J. 65: 1183-1196.
Lee, B. D., Graham, R. C., Laurent, T. E., Amrhein, C., 2004. Pedogenesis in a wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma. 118: 303–320.
Lee, B. D., S. K. Sears, R. C. Graham, C. Amrhein, and H. Vali, 2003. Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Sci. Soc. Am. J. 67: 1309-1317.
L’Huillier, L., and S. Edighoffer (1996) Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant Soil. 186:255-264.
Lindsay, W. L., and Norvell, W. A., 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42: 421-428.
Lyon, G. L., Brooks, R. R., Peterson, P. J., Butler, G. W., 1968. Trace elements in a New Zealand serpentine flora. Plant and Soil. 29: 225-240.
Marchiol, L., Assolari, S., Sacco, P., and Zerbi, G, 2004. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ, pollut. 132: 21-27.
Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., Morel, J. L., 2006. Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136: 28–37.
McGrath, S. P., 1995. Chromium and nickel. In: Alloway, B.J. (Ed.),Heavy Metals in Soils. Blackie Academic and Professional, London. pp.152–178.
McKeague, J. A., and Day, J. H., 1966. Dithionite and oxalate extractable Fe and Al as acids in different various classes of soils. Canadian Journal of Soil Science. 46: 13-22.
Mclean, E. O., 1982. Soil pH and lime requirement, In: Page, A. L. et al. (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties, Agronomy monograph No. 9, Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA. 199-244.
Meers, E., Samson, R., Tack, F. M. G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., and Verloo, M. G., 2007. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environmental and Experimental Botany. 60: 385-396.
Mehra, O. P., and Jackson, M. L., 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Miner. 7: 317-327.
Minguzzi, C., and Vergnano, O.,1948. The nickel content of the ash of Alyssum bertolonii Desv. Botanical and geochemical considerations. Atti Soc.Tosc.Sci.Nat.,55: 49-77(in Italian).
Mortvedt, J.J., and Giordano, P. M ., 1975. Response of corn to zinc and chromium in municipal wastes applied to soil. Journal of environmental quality. 4: 170-174.
Mossop, K. F., and C. M. Davidson, 2003. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta. 478: 111-118.
Nakashima, T., Okada, T., Asahi, J., Yamashita, A., Kawai, K., Kasai, H., Matsuno, K., Gamou, S., and Hirano, T., 2008. 18-Hydroxydeoxyguanosine generated in the earthworm Eisenia fetida grown in metal-containing soil. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 654: 38–144.
Nelson, D. W., and Sommer, L. E., 1982. Total carbon. Organic carbon, and organic matter, In: Page, A. L. et al. (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy monograph No. 2. Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA. 539-577.
Norvell, W. A., 1984. Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Sci Soc Am J.48: 1285-1292.
Novozamsky, I., Lexmond, T. H. M., and Houba, V. J. G., 1993. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plant. Int. J. Environ. Anal. Chem. 51: 47-58.
O’Dell, R. E. and V. P. Claassen, 2006. Serpentine and nonserpentine Achillea millefolium accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant Soil. 279: 253-269.
Otero, X. L., M.A. Huerta-Diaz, and F. Macias, 2000. Heavy metal geochemistry of saltmarsh soils from the Ria of Ortigueira (mafic and ultramafic areas, NW Iberian Peninsula)
Oze, C., Bird, D. K., and Fendorf, S., 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. The National Academy of Sciences of the USA. 104: 6544-6549.
Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G., 2004. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science. 304: 67-101.
Proctor, J., and Woodell, S., 1975. The ecology of serpentine soils. Advances in Ecological Research. 9: 255-366.
Proctor, J., 1999. Toxin, mutrient shortages and droughts: the serpentine challenge. Trends Ecological Evol. 14: 334-335.
Quantin, C., Becqure, T., and Berthelin, J., 2002a. Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. Comptes Rendus de l'Acadâemie des sciences. 334: 273-278.
Quantin, C., Becquer, T., Rouiller, J.H., Berthelin, J., 2002b. Redistribution of metals in a new Caledonia ferralsol after microbial weathering. Soil Science Society of America Journal. 66: 1797- 1804.
Rabenhorst, M. C., J. E. Foss, and D. S. Fanning, 1982. Genesis of Maryland soils formed from serpentine. Soil Science Society of America Journal. 46: 607-616.
Reeves, R. D., 1992. The hyperaccumulation of nickel by serpentine plant. UK 193-229.
Reeves, R. D., Baker, A. J. M., Romero, R., 2007. The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance. J. Geochem. Explor. 93: 153-159.
Reeves, R. D., and R. R. Brooks, 1983. European species of Thlaspi L. (Crucifease) as indicators of nickel and zinc. Journal of Geochemical Exploration. 18: 275-283.
Robinson, B. H., Brooks, R. R., Clothier, B. E., 1999. Soil Amendments affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation. Annals of botany. 84: 689-694.
Schreier, H., J. A. Omueti, and L. M. Lavkulich, 1987. Weathering processes of asbestos-rich serpentinitic sediments. Soil Sci. Soc. Am. J. 51: 993-999.
Su, D. C., J. W. C. Wong, and H, Jagadeesan, 2004. Implications of rhizospheric heavy metals and nutrients for the growth of alfalfa in sludge amended soil. Chemosphere. 56: 957-965.
Tessier, A., P. G. C. Campbell, and M. Bisson, 1979. Sequential extraction procedure for the speciation of particular trace metals. Anal. Chem. 51: 844-851.
Thomas, G. W., 1982. Exchangeable cation, In: A. L. Page et al. (eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy monograph No. 9. Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA. 159-165.
Tu C., Zheng C. R., Chen H. M., 2000. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere 41: 133-138.
Turitzin, S. N., 1982. Nutrient limitations to plant growth in a California serpentine grassland. American Midland Naturalist. 107: 95-99.
Ure, A. M., P. H. Quevauviller, H. Muntau, and B. Griepink, 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communites. Int. J. Environ. Anal. Chem. 51: 135-151.
Vangronsveld, J., and S.D. Cunninggham, 1998. Introduction to the concepts. In: Vangronsveld, J., and S.D. Cunninggham (Eds.), Metal contaminated soils: In-situ Inactivation and phytorestoration. Springer Verlag, Berlin. 219-225.
Wang, C.C., Chang, C.Y., Chen, C.Y., 2001. Study on metal ion adsorption of bifunctional chelating/ion-exchange resins. Macromolecular chemistry and physics. 202: 882-890.
Wei, S., Zhou, Q., and Koval, P.V., 2006. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci. Total Environ. 369: 441-446.
Wenzel, W. W., and Jockwer, F., 1999. Accumulation of heave metals in plants grown on mineralized soils of the Austrian Alps. Environ. Pollut. 104: 145-155.
Wild, H,1974. Indigenous plant and chromium in Rhodesia.Kirkia 9: 233-241.
Zbigniew Marzec, 2004. Alimentary chromium, nickel, and selenium intake of adults in Poland estimated by analysis and calculations using the duplicate portion technique. Food/Nahrung. 48: 47–52.
Zhao, F. J., Lombi, E., and McGrath, S. P., 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil. 249: 37-43.