跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/13 21:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊宏
研究生(外文):Juhn-Horng Chen
論文名稱:轉子軸承系統之軸承參數識別
論文名稱(外文):Identification of Linearized Characteristics of Bearings in Rotor-Bearing Systems
指導教授:李安謙
指導教授(外文):An-Chen Lee
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1994
畢業學年度:82
語文別:英文
中文關鍵詞:轉子軸承估計器激振器撓度旋轉角
外文關鍵詞:RotorBearingEstimatorExcitorDeflectionDeflection Angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出估計線性化軸承參數的新方法,所考慮的轉子軸承系統包含
可沿軸向改變截面積之撓性軸、剛性圓盤、以及非等向性軸承。依據不同
的轉子或量測資訊,可利用有限元素或廣義傳遞矩陣模式,推導出不同的
軸承估計器。論文中所提出的方法,可在機械運轉時作軸承參數估計,並
且不須使用激振器。對有限元素模式的軸承估計器而言,其優點在於不須
量測系統的激振力。估計器可分別由時域和頻域推導而得。依據所獲得轉
子資訊的多寡,可推導出不同的軸承估計器。當轉子所有參數皆為已知,
軸承估計器所須量測值為相對於有限元素模式所有節點的撓度;若轉子的
部分參數已知,則所須量測值為與軸承相接之軸元素上節點的撓度與旋轉
角。對廣義傳遞矩陣模式的軸承估計器而言,其優點在於可減少感測器的
使用數,但必須量測系統的激振力。針對旋轉角是否可量測,可推導出不
同的軸承估計器。當轉子軸承系統任一自由端之撓度與旋轉角皆可量得,
可藉由量測軸承間任一點之撓度依序求得所有軸承之參數;若旋轉角無法
量測,則必須利用數值方法求得。本篇論文內容包括理論推導、電腦模擬
、以及實驗。
Cover
CONTENTS
CHINESE ABSTRACT
ENGLISH ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF PHOTOGRAPHS
NOMENCLATURE
CHAPTER 1 INTRODUCTION
1.1 General Statements of Problem
1.2 Background Review
1.3 Proposed Approach
1.4 Organization
CHAPTER 2 FINITE ELEMENT FORMULATION OF THE ORTOR-BEARING SYSTEM
2.1 Equations of Motion for the Shafft Element
2.2 The Finite Element Model of the rotor-bearing System
CHAPTER 3 IDENTIFICATION FROM TIME-DEMAIN BASED ON THE FINITE ELEMENT MODEL
3.1 Derivation of Identification Formula for Case T-A ─Rotor Parameter Are All Known
3.2 Derivation of Indetification Formula for Case T-B ─Rotor Parameters in the Vicinity
of the Supports Are Known
3.3 Derivation of Indetification Formula for Case T-B ─Rotor Parameters
Are Unknown except for the Masses of the Elements in the Vicinity of the Supports
3.4 The Bias Problem
3.5 Relation of Noise to Signal Ration between measurements and Artificial Forces
3.6 Improvement of Identification Parocedure
3.7 Digital Simulation and Discussion
CHAPTER 4 IDENTIFICATION FROM FREQUENCY-DOMAIN BASED ON THE FINITE ELEMENT MODEL
4.1 Derivation of Identification Formula for Case F-A─Rotor Parameter Are All Known
4.2 Derivation of Identification Formula for Case F-B─Rotor Parameter in the Vicinity
of the Supports Are Known
4.3 Derivation of Identification Formula for Case F-C─Rotor Parameter Are Unknown
except for the Masses of the Elements in the Vicinity of the Supports
4.4 Digital Simulation and Discussion
CHAPTER 5 GENERAL TRANSFER MATRIX FORMULATION OF THE ROTOR-BEARING SYSTEM
5.1 Equations of Mode Functions for the Unbalance Shaft
5.2 Feneral Solutions of Mode Functions
5.3 The Transfer Matrix of the Shaft
5.4 Overall Transfer Matrix of hole System
CHAPTER 6 IDENTIFICATION BASED ON THE GENERAL TRANSFER MATRIX MODEL
6.1 Derivation of Identification Formula for Case G-A─Deflections and Deflection
Angle Are Measurable
6.2 Derivation of Identification Formula for Case G-B─Only Deflections Are Measurable
6.3 Digital Simulation and Discussion
CHAPTER 7 EXPERIMENTAL SETUP AND RESULTS
7.1 Test Rig
7.2 Experimental Instrumentation
7.3 Experimental Procedure and Results
CHAPTER 8 CONCLUSION
REFERENCES
APPENDIX A Local Matrices
APPENDIX B Contribution of Velocity Term in Equations(2.11)and (3.27)
APPENDIX C Detail of ai
APPENDIX D Detail of Modified ai
APPENDIX E Derivatio of the Matrices E,F,G,H,co,so,ωc,ωs,fac,fas in Sections 3.1
APPENDIX F Details of ,u,and v
APPENDIX G Elemens of Matrix H
APPENDIX H Elements of Matrix T口
APPENDIX I Elements of Matrix A
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top