跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張富翔
研究生(外文):Fu-Hsiang, Chang
論文名稱:彈性扁平足跑者的生物力學特性暨神經肌肉訓練對其相關跑步傷害之效益探討
論文名稱(外文):Biomechanical Characteristics in Runners with Flexible Flatfoot and Effects of Neuromuscular Training for Related Running Injuries
指導教授:陳文英陳文英引用關係
指導教授(外文):Wen-Yin, Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:100
中文關鍵詞:彈性扁平足下肢運動學下肢肌電圖學神經動作訓練
外文關鍵詞:flexible flatfootlower extremity kinematicslower extremity electromyographyneuromuscular training
相關次數:
  • 被引用被引用:0
  • 點閱點閱:543
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
背景:彈性扁平足的生物力學作用易在跑步及高度重複性的活動中造成顯著的肌肉骨骼系統傷害。文獻指出增加後足旋前角度會伴隨下肢內轉、骨盆前傾角度增加,而動態過程中可能伴隨著過度膝外翻、髖內收以及骨盆不穩定等連動關係。如此不正常的骨骼排列造成功能性動作中從足部到脊椎的力量傳遞不良,而長期累積的壓力造成下肢傷害如髕骨疼痛症候群、脛骨疼痛、足底筋膜炎以及下背痛的產生,但現今仍無實驗證據指出扁平足患者在功能性動作中是否有這樣的連動關係。另外為了抵制扁平足的不正常排列,重新建立足部到脊椎的動力鏈控制維持關節間的穩定,將其整合至日常生活活動中是非常重要的。然而,尚無研究探討神經肌肉控制運動對於下肢的動力鏈控制以及症狀改善的效果,特別是對於彈性扁平足跑者。目的:本篇探討彈性扁平足跑者下肢生物力學特性,檢視神經肌肉訓練對彈性扁平足合併下肢疼痛跑者的效益。方法:本研究的第一部分是橫斷式探索性研究設計。實驗組徵招20位有跑步相關的下肢疼痛的彈性扁平足跑者以及15位年齡、性別、身體質量指數相符的正常足弓健康跑者做為對照組。在基本身體特徵檢查後,使用動作分析系統以及表面肌電圖偵測受測者在步態過程以及單腳蹲下肢的運動學以及肌肉的活性狀況。本實驗的第二個部分是單組前後測的類實驗型設計。彈性扁平足跑者共17人接受6週的神經肌肉訓練,在介入前、後除了以動作分析系統以及表面肌電圖偵測受測者在步態過程以及單腳蹲下肢的運動學以及肌肉的活性狀況外,並使用視覺疼痛類比量表評估跑步時下肢疼痛的分數,以及下肢功能量表評估失能改善情形。結果:研究第一部份顯示,兩組在平地行走及單腳蹲的下肢運動學無顯著差異,在肌肉活性上,有症狀的彈性扁平足跑者的脛前肌與股二頭肌分別在平地行走與單腳蹲的動作中活性顯著較高 (5%, p<.05; 4.73%, p<.05),而腓骨長肌在平地行走時則顯著較低 (6.24%, p<.05)。研究第二部分顯示,彈性扁平足跑者在經過六周訓練後疼痛顯著下降 (3.29%, p<.005),下肢功能量表分數顯著上升 (3.6%, p<.005)。在運動學方面,訓練後單腳下蹲的髖內收角度顯著下降 (2.14°, p<.005),而肌肉活性方面,脛前肌在平地行走時的活性顯著下降 (4.17%, p<.005),而在單腳下蹲時顯著上升 (8.74%, p<.005)。結論:彈性扁平足跑者與正常足弓的跑者在足踝與膝關節的肌肉控制情形不相同;神經肌肉訓練可增進彈性扁平足跑者的關節控制能力並改善相關的疼痛及失能情形。
關鍵字:彈性扁平足、下肢運動學、下肢肌電圖學、神經動作訓練

Background and Purpose: Biomechanical stresses in subjects with flexible flatfoot (FFF) during running and other loaded activities with high repetition easily cause significant injuries to the musculoskeletal system. Literature reflects that excessive rearfoot pronation would cause increased lower extremity internal rotation and pelvic anterior tilt, and also lead to excessive knee valgus, hip adduction, pelvic instability in dynamic movements. These abnormal skeletal malalignment causes poor force transfer between the foot and spine in functional movements and accumulated tissue stresses in the lower extremity and lumbar region over time leading to the development of lower extremity injuries such as patellofemoral pain syndrome, shin splints, plantar fasciitis and low back pain. Till now, there have been no empirical evidence focusing on the lower extremity chain reaction in functional movements. To offset the malalignment associated with FFF it is important to reestablish the kinetic control and maintain joint stability from the foot to spine and integrate them into functional activities of daily living. However, no studies have investigated the effects of neuromuscular control exercise on lower extremity kinetic control and symptom improvement; especially in runners with FFF.
Purposes: 1) To investigate the biomechanical characteristics between runners with and without FFF and 2) To examine whether neuromuscular training from the foot to spine is beneficial in runners with FFF and lower extremity or low back pain.
Methods: The first part of this study was a cross sectional, matched-control design. We recruited twenty runners with FFF and associated lower extremity or low back pain, and fifteen age, gender, and BMI matched healthy subjects with normal foot type as the comparison group. After the baseline assessment of physical characteristics, the subjects were tested with a motion capture system and surface electromyography to collect kinematic and muscle activation data of the lower extremity during level walking and single leg squatting. The second part of this study was a one group pretest-posttest quasi-experimental design. 17 Subjects with FFF and running related lower extremity pain in the first part of study received neuromuscular training from the foot to spine. Outcome was evaluated by visual analog scale (VAS) for pain and lower extremity functional scale (LEFS), as well as kinematic and electromyography changes after 6 weeks of training.
Results: There was no significant difference on the kinematics data, but muscle activation of tibialis anterior and biceps femoris was significantly higher during both functional tasks (5%, p<.05; 4.73%, p<.05), and activation of peroneus longus was lower (6.24%, p<.05) during level walking in symptomatic runners with FFF. After 6-week neuromuscular training, runners with FFF showed significantly smaller hip adduction (2.14°, p<.005) and trend of decreased hip internal rotation during single leg squatting. In muscle activity, tibialis anterior were lower during level walking (4.17%, p<.005) and higher during single leg squatting (8.74%, p<.005). These subjects also reported decreased pain (3.29%, p<.005) and increased lower extremity function (3.6%, p<.005) after 6-week training. Conclusion: Knee and ankle muscle activity were different between symptomatic runners with FFF and healthy runners with normal arch. Neuromuscular training can change lower extremity motor control and improve pain and dysfunction in runners with FFF.
Keywords: flexible flatfoot, lower extremity kinematics, lower extremity electromyography, neuromuscular training

謝誌 I
摘要 II
ABSTRACT IV
目錄 VII
表目錄 X
圖目錄 XII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究假設 3
第四節 重要性 3
第五節 操作性名詞定義 4
第二章 文獻回顧 5
第一節 跑步與下肢傷害 5
第二節 扁平足的生物力學 6
第三節 彈性扁平足合併下肢肌骨病症的治療 12
第四節 總結 15
第三章 研究方法 16
第一節 研究設計與研究架構 16
第二節 研究材料與研究方法 16
第三節 資料處理與分析方法 24
第四節 前驅實驗 27
第四章 結果 29
第一節 受試者基本資料 29
第二節 比較足弓正常跑者與扁平足跑者下肢運動學分析 30
第三節 比較足弓正常與扁平足跑者下肢肌肉活性分析 34
第四節 扁平足跑者在神經肌肉運動訓練後運動學及肌肉活性的改變 35
第五節 扁平足跑者在六周神經肌肉運動訓練後疼痛及功能改善情形 36
第五章 討論 37
第一節 受試者特性 37
第二節 下肢運動學 38
第三節 下肢肌肉活性 39
第四節 神經肌肉訓練後運動學及肌肉活性的改變 41
第五節 訓練後疼痛及失能的改善 42
第六節 臨床應用 43
第七節 研究限制與未來方向 44
參考文獻 47
附錄 92
表 1:下肢人體測量項目隔日再測信度 55
表 2:平地步行時下肢關節於三維空間的角度最大值之隔日再測信度 56
表 3:單腳蹲下時下肢關節於三維空間之角度差值隔日再測信度 56
表 4:平地步行時下肢肌肉活性隔日再測信度 58
表 5:單腳蹲下時下肢肌肉活性隔日再測信度 59
表 6:受試者基本資料(第一部分研究) 60
表 7:受試者資料(第二部分研究) 61
表 8:比較彈性扁平足跑者與正常足弓跑者於平地步行時下肢運動學角度 62
表 9:比較彈性扁平足跑者與正常足弓跑者於單腳蹲時下肢運動學角度 63
表 10:比較彈性扁平足跑者與正常足弓跑者於平地步行時下肢肌肉活性 64
表 11:比較彈性扁平足跑者與正常足弓跑者單腳蹲時下肢肌肉活性 65
表 12:比較有症狀之彈性扁平足跑者於六周神經訓練前、後平地步行時下肢運動學角度最大值 66
表 13:比較有症狀之彈性扁平足跑者於六周神經訓練前、後單腳蹲(膝關節屈曲10-60度)時下肢運動學角度差值 67
表 14:比較有症狀之彈性扁平足跑者於六周神經訓練前、後平地步行時下肢肌肉活性 68
表 15:比較有症狀之彈性扁平足跑者於六周神經訓練前、後單腳下蹲時下肢肌肉活性 69
表 16:比較有症狀之彈性扁平足跑者於六周神經訓練前、後的疼痛及功能分數 70
圖 1:單腳蹲測試起始動作 71
圖 2:VICON動作分析系統 72
圖 3:14毫米 (mm) 反光球 73
圖 4:Plug in gait反光球標記肢段點 74
圖 5:氯化銀電極貼片 75
圖 6:脛前肌、腓骨長肌電極貼片黏貼方式 76
圖 7:半腱、半膜肌電極貼片黏貼方式 77
圖 8:臀大肌電極貼片黏貼方式 78
圖 9:Noraxon肌電圖系統,足底壓力開關 (foot switch) 79
圖 10:後足角度量測 80
圖 11:前足角度量測 81
圖 12:足弓高度比量測 82
圖 13:扁平足跑者與足弓正常跑者在步行站立期時骨盆矢狀面的動作 83
圖 14:扁平足跑者與足弓正常跑者在步行站立期時髖關節矢狀面的動作 84
圖 15:扁平足跑者與足弓正常跑者在步行站立期時膝關節矢狀面的動作 85
圖 16:扁平足跑者與足弓正常跑者在步行站立期時骨盆額狀面的動作 86
圖 17:扁平足跑者與足弓正常跑者在步行站立期時髖關節額狀面的動作 87
圖 18:扁平足跑者與足弓正常跑者在步行站立期時膝關節額狀面的動作 88
圖 19:扁平足跑者與足弓正常跑者在步行站立期時骨盆橫狀面的動作 89
圖 20:扁平足跑者與足弓正常跑者在步行站立期時髖關節橫狀面的動作 90
圖 21:扁平足跑者與足弓正常跑者在步行站立期時膝關節橫狀面的動作 91


1. Kosashvili Y, Fridman T, Backstein D, Safir O, Bar Ziv Y. The correlation between pes planus and anterior knee or intermittent low back pain. Foot &; and Ankle Int. 2008;29(9):910-913.
2. Menz HB, Dufour AB, Riskowski JL, Hillstrom HJ, Hannan MT. Foot posture, foot function and low back pain: the Framingham Foot Study. Rheumatology. 2013;52(12):2275-2282.
3. Molgaard C, Lundbye-Christensen S, Simonsen O. High prevalence of foot problems in the Danish population: a survey of causes and associations. Foot. 2010;20(1):7-11.
4. Giza E, Cush G, Schon LC. The flexible flatfoot in the adult. Foot and ankle clinics. 2007;12(2):251-271.
5. Lee MS, Vanore JV, Thomas JL, et al. Diagnosis and treatment of adult flatfoot. J foot Ankle Surg. 2005;44(2):78-113.
6. Mosca VS. Flexible flatfoot in children and adolescents. J Child Orthop. 2010;4(2):107-121.
7. Hunt AE, Smith RM. Mechanics and control of the flat versus normal foot during the stance phase of walking. Clinical Biomech. 2004;19(4):391-397.
8. Cambron JA, Duarte M, Dexheimer J, Solecki T. Shoe orthotics for the treatment of chronic low back pain: a randomized controlled pilot study. J Manipulative Physio Ther. 2011;34(4):254-260.
9. Ferrari R. Effect of customized foot orthotics in addition to usual care for the management of chronic low back pain following work-related low back injury. J Manipulative Physio Ther. 2013;36(6):359-363.
10. Comerford MJ, Mottram SL. Movement and stability dysfunction--contemporary developments. Man Ther. 2001;6(1):15-26.
11. Meininger AK, Koh JL. Evaluation of the injured runner. Clin Sports Med. 2012;31(2):203-215.
12. Pujalte GG, Silvis ML. The injured runner. Med Cli Nor Americ. 2014;98(4):851-868.
13. Walters JL, Mendicino SS. The flexible adult flatfoot: anatomy and pathomechanics. Clini Podiatr Med Surg. 2014;31(3):329-336.
14. Cilli F, Pehlivan O, Keklikci K, Mahirogullari M, Kuskucu M. Prevalence of flatfoot in Turkish male adolescents. Eklem Hastalik Cerrahisi. 2009;20(2):90-92.
15. Shibuya N, Kitterman RT, LaFontaine J, Jupiter DC. Demographic, physical, and radiographic factors associated with functional flatfoot deformity. J Foot Ankle Sur. 2014;53(2):168-172.
16. Tenenbaum S, Hershkovich O, Gordon B, et al. Flexible pes planus in adolescents: body mass index, body height, and gender--an epidemiological study. Foot Ankle Int. 2013;34(6):811-817.
17. Neal BS GI, Dowling GJ, Murley GS, Munteanu SE, Franettovich Smith MM, Collins NJ, Barton CJ. Foot posture as a risk factor for lower limb overuse injury: a systematic review and meta-analysis. J Foot Ankle Res. 2014;7(1):55.
18. Peggy AH, Dolores BB, Signe B (Eds). Brunnstrom's clinical kinesiology. Philadelphia (pp. 535-586) : F.A. Davis, 2012.
19. Khamis S, Yizhar Z. Effect of feet hyperpronation on pelvic alignment in a standing position. Gait Posture. 2007;25(1):127-134.
20. Duval K, Lam T, Sanderson D. The mechanical relationship between the rearfoot, pelvis and low-back. Gait Posture. 2010;32(4):637-640.
21. Chang JS, Kwon YH, Kim CS, Ahn SH, Park SH. Differences of ground reaction forces and kinematics of lower extremity according to landing height between flat and normal feet. J Back Musculoskelet Rehabil. 2012;25(1):21-26.
22. Barwick A, Smith J, Chuter V. The relationship between foot motion and lumbopelvic-hip function: a review of the literature. Foot. 2012;22(3):224-231.
23. Giggins OM PU, Caulfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil. 2013;10(60).
24. Twomey DM, McIntosh AS. The effects of low arched feet on lower limb gait kinematics in children. Foot. 2012;22(2):60-65.
25. Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res. 2009;2(35).
26. Arastoo AA, Aghdam EM, Habibi AH, Zahednejad S. Kinetic factors of vertical jumping for heading a ball in flexible flatfooted amateur soccer players with and without insole adoption. Prosthet Orthot Int. 2014;38(3):204-210.
27. 黃渝曼(2013)。扁平足下背痛患者之肌肉骨骼特性暨鞋墊療效探討。未出版碩士論文,國立陽明大學,台北市。
28. Tahmasebi R KM, Satvati B, Fatoye F. Evaluation of standing stability in individuals with flatfeet. Foot Ankle Spec. 2015 8(3):168-174.
29. Castro-Mendez A, Munuera PV, Albornoz-Cabello M. The short-term effect of custom-made foot orthoses in subjects with excessive foot pronation and lower back pain: a randomized, double-blinded, clinical trial. Prosthet Orthot Int. 2013;37(5):384-390.
30. Lack S, Barton C, Woledge R, Laupheimer M, Morrissey D. The immediate effects of foot orthoses on hip and knee kinematics and muscle activity during a functional step-up task in individuals with patellofemoral pain. Clin Biomech. 2014;29(9):1056-1062.
31. Shih YF, Wen YK, Chen WY. Application of wedged foot orthosis effectively reduces pain in runners with pronated foot: a randomized clinical study. Clin Rehabil. 2011;25(10):913-923.
32. Mulligan EP, Cook PG. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man Ther. 2013;18(5):425-430.
33. Takayuki Hashumoto KS. Strength Training for the Intrinsic Flexor Muscles of the Foot: Effects on Muscle Strength, the Foot Arch, and Dynamic Parameters Before and After the Training. J. Phys. Ther. Sci. 2014;(26):373–376.
34. Comerford MJ, Mottram SL. Functional stability re-training: principles and strategies for managing mechanical dysfunction. Man Ther. 2001;6(1):3-14.
35. Alenezi F, Herrington L, Jones P, Jones R. The reliability of biomechanical variables collected during single leg squat and landing tasks. J Electromyogr Kinesio. 2014;24(5):718-721.
36. Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM): sensor location. 取自http://www.seniam.org/,取得日期2015.07.17
37. Boonstra AM SPH, Reneman MF, Posthumus JB, Stewart RE. Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int J Rehabil Res. 2008;31(2)165-9.
38. Hou WH, Yeh TS, Liang HW. Reliability and validity of the Taiwan Chinese version of the Lower Extremity Functional Scale. J Form Med Assoc. 2014;113(5):313-320.
39. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Physio ther. 1999;79(4):371-383.
40. Neelly K, Wallmann HW, Backus CJ. Validity of measuring leg length with a tape measure compared to a computed tomography scan. Physiother Theory Pract. 2013;29(6):487-492.
41. McPoil TG, Cornwall MW, Vicenzino B, et al. Effect of using truncated versus total foot length to calculate the arch height ratio. Foot. 2008;18(4):220-227.
42. Franettovich MM, McPoil TG, Russell T, Skardoon G, Vicenzino B. The ability to predict dynamic foot posture from static measurements. J Am Podiatr Med Assoc. 2007;97(2):115-120.
43. Shih YF, Chen CY, Chen WY, Lin HC. Lower extremity kinematics in children with and without flexible flatfoot: a comparative study. BMC musculoskeletal Disord. 2012;2(13):31.

44. Karandagh MM, Balochi R, Soheily S. Comparison of kinematic gait paremeters in the 16-18 years old male students with the flat and normal foot. Indi J Fund Appli Life Sci. 2015;5(S1):5165-72
45. Scattone Silva R, Maciel CD, Serrao FV. The effects of forefoot varus on hip and knee kinematics during single-leg squat. Man Ther. 2015;20(1):79-83.
46. Baldon Rde M, Serrao FV, Scattone Silva R, Piva SR. Effects of functional stabilization training on pain, function, and lower extremity biomechanics in women with patellofemoral pain: a randomized clinical trial. J Orthop Sports Phys Ther. 2014;44(4):240-A248.
47. Kim MK, Lee YS. Kinematic analysis of the lower extremities of subjects with flat feet at different gait speeds. J Phys Ther Sci. 2013;25(5):531-533.
48. Murley GS, Landorf KB, Menz HB, Bird AR. Effect of foot posture, foot orthoses and footwear on lower limb muscle activity during walking and running: a systematic review. Gait Posture. 2009;29(2):172-187.
49. Preece SJ, Graham-Smith P, Nester CJ, et al. The influence of gluteus maximus on transverse plane tibial rotation. Gait Posture. 2008;27(4):616-621.
50. Bartlett JL, Sumner B, Ellis RG, Kram R. Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing. Amer J Phys Anthr. 2014;153(1):124-131.
51. Franettovich MM, Murley GS, David BS, Bird AR. A comparison of augmented low-Dye taping and ankle bracing on lower limb muscle activity during walking in adults with flat-arched foot posture. J Sci Med sport. 2012;15(1):8-13.
52. Mills K, Blanch P, Chapman AR, McPoil TG, Vicenzino B. Foot orthoses and gait: a systematic review and meta-analysis of literature pertaining to potential mechanisms. Br J Sports Med. 2010;44(14):1035-1046.
53. Wouters I, Almonroeder T, Dejarlais B, Laack A, Willson JD, Kernozek TW. Effects of a movement training program on hip and knee joint frontal plane running mechanics. Int J Sports Phys Ther. 2012;7(6):637-646.
54. Willy RW, Davis IS. The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. J Orthop Sports Phys Ther. 2011;41(9):625-632.
55. Napier C, Cochrane CK, Taunton JE, Hunt MA. Gait modifications to change lower extremity gait biomechanics in runners: a systematic review. Br J Sports Med. 2015;bjsports-2014-094393.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top