|
1 Matsumura, I. & Kanakura, Y. Molecular control of megakaryopoiesis and thrombopoiesis. International journal of hematology 75, 473-483 (2002). 2 Deutsch, V. R. & Tomer, A. Megakaryocyte development and platelet production. British journal of haematology 134, 453-466, doi:10.1111/j.1365-2141.2006.06215.x (2006). 3 Szalai, G., LaRue, A. C. & Watson, D. K. Molecular mechanisms of megakaryopoiesis. Cellular and molecular life sciences : CMLS 63, 2460-2476, doi:10.1007/s00018-006-6190-8 (2006). 4 Wen, Q., Goldenson, B. & Crispino, J. D. Normal and malignant megakaryopoiesis. Expert reviews in molecular medicine 13, e32, doi:10.1017/s1462399411002043 (2011). 5 Hodohara, K., Fujii, N., Yamamoto, N. & Kaushansky, K. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood 95, 769-775 (2000). 6 Roth, G. J., Yagi, M. & Bastian, L. S. The platelet glycoprotein Ib-V-IX system: regulation of gene expression. Stem cells 14 Suppl 1, 188-193, doi:10.1002/stem.5530140724 (1996). 7 Pang, L., Weiss, M. J. & Poncz, M. Megakaryocyte biology and related disorders. The Journal of clinical investigation 115, 3332-3338, doi:10.1172/jci26720 (2005). 8 Nutt, S. L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. The Journal of experimental medicine 201, 221-231, doi:10.1084/jem.20041535 (2005). 9 Briddell, R. A., Brandt, J. E., Straneva, J. E., Srour, E. F. & Hoffman, R. Characterization of the human burst-forming unit-megakaryocyte. Blood 74, 145-151 (1989). 10 Bluteau, D. et al. Regulation of megakaryocyte maturation and platelet formation. Journal of thrombosis and haemostasis : JTH 7 Suppl 1, 227-234, doi:10.1111/j.1538-7836.2009.03398.x (2009). 11 Miyazaki, H. Physiologic role of TPO in thrombopoiesis. Stem cells 14 Suppl 1, 133-138, doi:10.1002/stem.5530140717 (1996). 12 Fox, N., Priestley, G., Papayannopoulou, T. & Kaushansky, K. Thrombopoietin expands hematopoietic stem cells after transplantation. The Journal of clinical investigation 110, 389-394, doi:10.1172/jci15430 (2002). 13 Kaushansky, K. The molecular mechanisms that control thrombopoiesis. The Journal of clinical investigation 115, 3339-3347, doi:10.1172/jci26674 (2005). 14 Kirito, K. & Kaushansky, K. Transcriptional regulation of megakaryopoiesis: thrombopoietin signaling and nuclear factors. Current opinion in hematology 13, 151-156, doi:10.1097/01.moh.0000219660.03657.4b (2006). 15 Muntean, A. G. et al. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood 109, 5199-5207, doi:10.1182/blood-2006-11-059378 (2007). 16 Lorsbach, R. B. et al. Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103, 2522-2529, doi:10.1182/blood-2003-07-2439 (2004). 17 Hart, A. et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13, 167-177 (2000). 18 Athanasiou, M., Mavrothalassitis, G., Sun-Hoffman, L. & Blair, D. G. FLI-1 is a suppressor of erythroid differentiation in human hematopoietic cells. Leukemia 14, 439-445 (2000). 19 Guerriero, R. et al. Unilineage megakaryocytic proliferation and differentiation of purified hematopoietic progenitors in serum-free liquid culture. Blood 86, 3725-3736 (1995). 20 Hagiwara, T., Kodama, I., Horie, K., Kato, T. & Miyazaki, H. Proliferative properties of human umbilical cord blood megakaryocyte progenitor cells to human thrombopoietin. Experimental hematology 26, 228-235 (1998). 21 Debili, N. et al. The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocyte progenitors. Blood 86, 2516-2525 (1995). 22 Fujimoto, T. T., Kohata, S., Suzuki, H., Miyazaki, H. & Fujimura, K. Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood 102, 4044-4051, doi:10.1182/blood-2003-06-1773 (2003). 23 Donovan, P. J. & Gearhart, J. The end of the beginning for pluripotent stem cells. Nature 414, 92-97, doi:10.1038/35102154 (2001). 24 Rao, M. S. & Mattson, M. P. Stem cells and aging: expanding the possibilities. Mechanisms of ageing and development 122, 713-734 (2001). 25 Pesce, M. & Scholer, H. R. Oct-4: control of totipotency and germline determination. Molecular reproduction and development 55, 452-457, doi:10.1002/(sici)1098-2795(200004)55:4<452::aid-mrd14>3.0.co;2-s (2000). 26 Armstrong, L., Lako, M., Lincoln, J., Cairns, P. M. & Hole, N. mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mechanisms of development 97, 109-116 (2000). 27 De Felici, M. & Pesce, M. Growth factors in mouse primordial germ cell migration and proliferation. Progress in growth factor research 5, 135-143 (1994). 28 Pedersen, R. A. Studies of in vitro differentiation with embryonic stem cells. Reproduction, fertility, and development 6, 543-552 (1994). 29 Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391 (1998). 30 Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684-687, doi:10.1038/336684a0 (1988). 31 Bradley, A. Embryonic stem cells: proliferation and differentiation. Current opinion in cell biology 2, 1013-1017 (1990). 32 Martin, G. R., Wiley, L. M. & Damjanov, I. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Developmental biology 61, 230-244 (1977). 33 Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M. V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Molecular and cellular biology 13, 473-486 (1993). 34 Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098-1101 (1994). 35 Palacios, R., Golunski, E. & Samaridis, J. In vitro generation of hematopoietic stem cells from an embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America 92, 7530-7534 (1995). 36 Kitajima, K., Tanaka, M., Zheng, J., Sakai-Ogawa, E. & Nakano, T. In vitro differentiation of mouse embryonic stem cells to hematopoietic cells on an OP9 stromal cell monolayer. Methods in enzymology 365, 72-83 (2003). 37 Lu, L. et al. Comparative effects of suppressive cytokines on isolated single CD34(3+) stem/progenitor cells from human bone marrow and umbilical cord blood plated with and without serum. Experimental hematology 21, 1442-1446 (1993). 38 Hows, J. M. et al. Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet 340, 73-76 (1992). 39 Tao, H., Gaudry, L., Rice, A. & Chong, B. Cord blood is better than bone marrow for generating megakaryocytic progenitor cells. Experimental hematology 27, 293-301 (1999). 40 Bornstein, R., Garcia-Vela, J., Gilsanz, F., Auray, C. & Cales, C. Cord blood megakaryocytes do not complete maturation, as indicated by impaired establishment of endomitosis and low expression of G1/S cyclins upon thrombopoietin-induced differentiation. British journal of haematology 114, 458-465 (2001). 41 Mattia, G. et al. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 99, 888-897 (2002). 42 Nakorn, T. N., Miyamoto, T. & Weissman, I. L. Characterization of mouse clonogenic megakaryocyte progenitors. Proceedings of the National Academy of Sciences of the United States of America 100, 205-210, doi:10.1073/pnas.262655099 (2003). 43 de Sauvage, F. J. et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369, 533-538, doi:10.1038/369533a0 (1994). 44 Martin, P. & Papayannopoulou, T. HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 216, 1233-1235 (1982). 45 Tabilio, A. et al. Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL). The EMBO journal 3, 453-459 (1984). 46 Ogura, M. et al. Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 66, 1384-1392 (1985). 47 Mock, M. & Mignot, T. Anthrax toxins and the host: a story of intimacy. Cellular microbiology 5, 15-23 (2003). 48 Banks, D. J., Ward, S. C. & Bradley, K. A. New insights into the functions of anthrax toxin. Expert Rev Mol Med 8, 1-18, doi:S1462399406010714 [pii] 10.1017/S1462399406010714 (2006). 49 Tournier, J. N., Quesnel-Hellmann, A., Cleret, A. & Vidal, D. R. Contribution of toxins to the pathogenesis of inhalational anthrax. Cellular microbiology 9, 555-565, doi:10.1111/j.1462-5822.2006.00866.x (2007). 50 Mock, M. & Fouet, A. Anthrax. Annu Rev Microbiol 55, 647-671 (2001). 51 Hicks, C. W., Sweeney, D. A., Cui, X., Li, Y. & Eichacker, P. Q. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive care medicine 38, 1092-1104, doi:10.1007/s00134-012-2541-0 (2012). 52 Abrami, L., Reig, N. & van der Goot, F. G. Anthrax toxin: the long and winding road that leads to the kill. Trends in microbiology 13, 72-78, doi:10.1016/j.tim.2004.12.004 (2005). 53 Moayeri, M. & Leppla, S. H. The roles of anthrax toxin in pathogenesis. Current opinion in microbiology 7, 19-24, doi:10.1016/j.mib.2003.12.001 (2004). 54 Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. Identification of the cellular receptor for anthrax toxin. Nature 414, 225-229, doi:10.1038/n35101999 (2001). 55 Scobie, H. M., Rainey, G. J., Bradley, K. A. & Young, J. A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proceedings of the National Academy of Sciences of the United States of America 100, 5170-5174, doi:10.1073/pnas.0431098100 (2003). 56 Leppla, S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America 79, 3162-3166 (1982). 57 Bardwell, A. J., Abdollahi, M. & Bardwell, L. Anthrax lethal factor-cleavage products of MAPK (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs. Biochem J 378, 569-577 (2004). 58 Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734-737 (1998). 59 Hagemann, C. & Blank, J. L. The ups and downs of MEK kinase interactions. Cell Signal 13, 863-875 (2001). 60 Wada, T. & Penninger, J. M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838-2849 (2004). 61 Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. The Journal of biological chemistry 261, 7123-7126 (1986). 62 Abramova, F. A., Grinberg, L. M., Yampolskaya, O. V. & Walker, D. H. Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proceedings of the National Academy of Sciences of the United States of America 90, 2291-2294 (1993). 63 Kau, J. H. et al. Antiplatelet activities of anthrax lethal toxin are associated with suppressed p42/44 and p38 mitogen-activated protein kinase pathways in the platelets. The Journal of infectious diseases 192, 1465-1474 (2005). 64 Chauncey, K. M., Szarowicz, S. E., Sidhu, G. S., During, R. L. & Southwick, F. S. Anthrax lethal and edema toxins fail to directly impair human platelet function. The Journal of infectious diseases 205, 453-457, doi:10.1093/infdis/jir763 (2012). 65 Geddis, A. E. Congenital amegakaryocytic thrombocytopenia. Pediatric blood & cancer 57, 199-203, doi:10.1002/pbc.22927 (2011). 66 Ten Cate, H. Trombocytopenia: one of the markers of disseminated intravascular coagulation. Pathophysiology of haemostasis and thrombosis 33, 413-416, doi:83838 (2003). 67 Rameshwar, P., Wong, E. W. & Connell, N. D. Effects by anthrax toxins on hematopoiesis: a key role for cytokines as mediators. Cytokine 57, 143-149, doi:10.1016/j.cyto.2011.10.013 (2012). 68 Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84-88, doi:10.1038/23962 (1998). 69 Miyazaki, R., Ogata, H. & Kobayashi, Y. Requirement of thrombopoietin-induced activation of ERK for megakaryocyte differentiation and of p38 for erythroid differentiation. Annals of hematology 80, 284-291 (2001). 70 Severin, S., Ghevaert, C. & Mazharian, A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. Journal of thrombosis and haemostasis : JTH 8, 17-26, doi:10.1111/j.1538-7836.2009.03658.x (2010). 71 Hung, S. C. et al. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. International journal of cancer. Journal international du cancer 110, 313-319, doi:10.1002/ijc.20126 (2004). 72 Krneta, J. et al. Dissociation of angiogenesis and tumorigenesis in follistatin- and activin-expressing tumors. Cancer research 66, 5686-5695, doi:10.1158/0008-5472.can-05-3821 (2006). 73 Jackson, C. W. Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood 42, 413-421 (1973). 74 Kau, J. H. et al. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice. PloS one 4, e4167, doi:10.1371/journal.pone.0004167 (2009). 75 Kau, J. H. et al. Sublethal doses of anthrax lethal toxin on the suppression of macrophage phagocytosis. PloS one 5, e14289, doi:10.1371/journal.pone.0014289 (2010). 76 Ding, D. C. et al. Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of disease 27, 339-353, doi:10.1016/j.nbd.2007.06.010 (2007). 77 Yang, C. C. et al. Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PloS one 3, e3336, doi:10.1371/journal.pone.0003336 (2008). 78 Bakhshi, T. et al. Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion 48, 2638-2644, doi:TRF01926 [pii] 10.1111/j.1537-2995.2008.01926.x (2008). 79 Cortin, V., Pineault, N. & Garnier, A. Ex vivo megakaryocyte expansion and platelet production from human cord blood stem cells. Methods in molecular biology 482, 109-126, doi:10.1007/978-1-59745-060-7_7 (2009). 80 Apostolidis, P. A., Woulfe, D. S., Chavez, M., Miller, W. M. & Papoutsakis, E. T. Role of tumor suppressor p53 in megakaryopoiesis and platelet function. Experimental hematology 40, 131-142 e134, doi:10.1016/j.exphem.2011.10.006 (2012). 81 Fuhrken, P. G., Apostolidis, P. A., Lindsey, S., Miller, W. M. & Papoutsakis, E. T. Tumor suppressor protein p53 regulates megakaryocytic polyploidization and apoptosis. The Journal of biological chemistry 283, 15589-15600, doi:10.1074/jbc.M801923200 (2008). 82 Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M. & Hoogstraten-Miller, S. Retro-orbital injections in mice. Lab animal 40, 155-160, doi:10.1038/laban0511-155 (2011). 83 Inagaki, K. et al. Induction of megakaryocytopoiesis and thrombocytopoiesis by JTZ-132, a novel small molecule with thrombopoietin mimetic activities. Blood 104, 58-64, doi:10.1182/blood-2003-10-3623 (2004). 84 Abushullaih, B. A., Pestina, T. I., Srivastava, D. K., Jackson, C. W. & Daw, N. C. A schedule of recombinant Mpl ligand highly effective at preventing lethal myelosuppression in mice given carboplatin and radiation. Experimental hematology 29, 1425-1431 (2001). 85 Shibuya, K. et al. Marked improvement of thrombocytopenia in a murine model of idiopathic thrombocytopenic purpura by pegylated recombinant human megakaryocyte growth and development factor. Experimental hematology 30, 1185-1192 (2002). 86 Moayeri, M., Haines, D., Young, H. A. & Leppla, S. H. Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J Clin Invest 112, 670-682 (2003). 87 Culley, N. C., Pinson, D. M., Chakrabarty, A., Mayo, M. S. & LeVine, S. M. Pathophysiological manifestations in mice exposed to anthrax lethal toxin. Infection and immunity 73, 7006-7010, doi:10.1128/iai.73.10.7006-7010.2005(2005). 88 Walsh, J. J. et al. A case of naturally acquired inhalation anthrax: clinical care and analyses of anti-protective antigen immunoglobulin G and lethal factor. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 44, 968-971, doi:10.1086/512372 (2007). 89 Tomer, A., Harker, L. A. & Burstein, S. A. Purification of human megakaryocytes by fluorescence-activated cell sorting. Blood 70, 1735-1742 (1987). 90 Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79-82, doi:10.1038/380079a0 (1996). 91 Boyer, S. N., Wazer, D. E. & Band, V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer research 56, 4620-4624 (1996). 92 Lian, X. J. & Gallouzi, I. E. Oxidative Stress Increases the Number of Stress Granules in Senescent Cells and Triggers a Rapid Decrease in p21waf1/cip1 Translation. The Journal of biological chemistry 284, 8877-8887, doi:10.1074/jbc.M806372200 (2009). 93 Stevens, L. C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Developmental biology 21, 364-382 (1970). 94 Shivdasani, R. A., Fujiwara, Y., McDevitt, M. A. & Orkin, S. H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. The EMBO journal 16, 3965-3973, doi:10.1093/emboj/16.13.3965 (1997). 95 Paulus, J. M., Maigne, J. & Keyhani, E. Mouse megakaryocytes secrete acetylcholinesterase. Blood 58, 1100-1106 (1981). 96 Park, J. M., Greten, F. R., Li, Z. W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048-2051 (2002). 97 Long, M. W., Heffner, C. H., Williams, J. L., Peters, C. & Prochownik, E. V. Regulation of megakaryocyte phenotype in human erythroleukemia cells. The Journal of clinical investigation 85, 1072-1084, doi:10.1172/jci114538 (1990). 98 Garcia, P. & Cales, C. Endoreplication in megakaryoblastic cell lines is accompanied by sustained expression of G1/S cyclins and downregulation of cdc25C. Oncogene 13, 695-703 (1996). 99 Oswald, J. et al. Gene-expression profiling of CD34+ hematopoietic cells expanded in a collagen I matrix. Stem cells 24, 494-500, doi:10.1634/stemcells.2005-0276 (2006). 100 Shcherbina, A. & Remold-O'Donnell, E. Role of caspase in a subset of human platelet activation responses. Blood 93, 4222-4231 (1999). 101 Patel, S. R., Hartwig, J. H. & Italiano, J. E., Jr. The biogenesis of platelets from megakaryocyte proplatelets. The Journal of clinical investigation 115, 3348-3354, doi:10.1172/jci26891 (2005). 102 Sun, D. S. et al. Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost 5, 2291-2299, doi:JTH2754 [pii] 10.1111/j.1538-7836.2007.02754.x (2007). 103 Kamath, S., Blann, A. D. & Lip, G. Y. Platelet activation: assessment and quantification. European heart journal 22, 1561-1571, doi:10.1053/euhj.2000.2515 (2001). 104 Berkow, R. L. et al. Isolation of human megakaryocytes by density centrifugation and counterflow centrigual elutriation. The Journal of laboratory and clinical medicine 103, 811-818 (1984). 105 Roecklein, B. A. & Torok-Storb, B. Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 85, 997-1005 (1995). 106 Durst, M., Dzarlieva-Petrusevska, R. T., Boukamp, P., Fusenig, N. E. & Gissmann, L. Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251-256 (1987). 107 Choo, A., Padmanabhan, J., Chin, A., Fong, W. J. & Oh, S. K. Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. Journal of biotechnology 122, 130-141, doi:10.1016/j.jbiotec.2005.09.008 (2006). 108 Nees, M. et al. Human papillomavirus type 16 E6 and E7 proteins inhibit differentiation-dependent expression of transforming growth factor-beta2 in cervical keratinocytes. Cancer research 60, 4289-4298 (2000). 109 Liu, S. et al. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell host & microbe 8, 455-462, doi:10.1016/j.chom.2010.10.004 (2010). 110 Moayeri, M. & Leppla, S. H. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Molecular aspects of medicine 30, 439-455, doi:10.1016/j.mam.2009.07.003 (2009). 111 de Graaf, C. A. & Metcalf, D. Thrombopoietin and hematopoietic stem cells. Cell cycle 10, 1582-1589 (2011). 112 Kaushansky, K. Historical review: megakaryopoiesis and thrombopoiesis. Blood 111, 981-986, doi:10.1182/blood-2007-05-088500 (2008). 113 Ebbe, S. & Stohlman, F., Jr. MEGAKARYOCYTOPOIESIS IN THE RAT. Blood 26, 20-35 (1965). 114 Jernigan, J. A. et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7, 933-944 (2001). 115 Rainey, G. J. & Young, J. A. Antitoxins: novel strategies to target agents of bioterrorism. Nature reviews. Microbiology 2, 721-726, doi:10.1038/nrmicro977 (2004). 116 Jernigan, D. B. et al. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerging infectious diseases 8, 1019-1028, doi:10.3201/eid0810.020353 (2002).
|