跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:諶伯綱
研究生(外文):Chen Po-Kong
論文名稱:鑑定炭疽桿菌致死毒素對血小板生成之致病效應
論文名稱(外文):Characterization of the Pathogenic Effects of Anthrax Lethal Toxin on Megakaryopoiesis
指導教授:孫德珊
指導教授(外文):Sun Der-Shan
口試委員:葉日弌馮清榮邱紫文顏伶汝
口試委員(外文):Yeh Jih-IPang Ching-YumChiou Tzyy-WenYen Lin-Ju
口試日期:2013-07-26
學位類別:博士
校院名稱:慈濟大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:88
中文關鍵詞:炭疽桿菌血小板前驅細胞臍帶血
外文關鍵詞:anthraxmegakaryocytecord blood
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
血小板對於凝血功能相當重要,而巨核細胞是血小板的前驅細胞。當骨髓中的血球幹細胞開始分化成巨核細胞時,此時血球幹細胞需要接受到血小板生成素 (thrombopoietin, TPO) 與細胞表面上的受體 c-mpl 結合後,透過一連串訊息傳遞刺激血球幹細胞增生以及分化成巨核細胞。在此研究的第一個部分,我們在實驗室建立利用胚胎幹細胞與老鼠的骨髓細胞 (OP9 stromal cell) 共同培養後,在體外將胚胎幹細胞分化成巨核細胞。然而,由於OP9 細胞是直接從老鼠的骨髓取出的初代細胞,其細胞的壽命不長,無法長時間繼代培養。於是我們利用將人類乳突病毒的基因E6/E7藉由反轉錄病毒的載體送入OP9細胞,使得細胞不朽化 (immortalized), 命名為I-OP9細胞。 相較於正常的OP9細胞,I-OP9細胞可以繼代培養超過四十二代,並且仍然保有其誘發胚胎幹細胞分化成巨核細胞的能力。在此研究的第二部分,我們想了解炭疽桿菌 (Bacillus anthracis) 致死毒素 (lethal toxin, LT) 對巨核細胞的致病影響。炭疽桿菌的主要毒力因子是致死毒素。我們之前的研究已知,致死毒素抑制血小板的功能與致死毒素造成的死亡有關,並且觀察到透過施打致死毒素所造成的死亡前,其小鼠有血小板低下的現象產生。目前已知致死毒素會去抑制訊息傳遞路徑mitogen activated protein kinase (MAPK) 下游的mitogen activated protein kinase kinase (MEK) 的活性,而另外先前已有報導指出巨核細胞的分化與MEK 家族中的extracellular signal-regulated kinase (ERK) 有關;綜合以上事實,我們假設致死毒素抑制血小板的前驅細胞的生成進而造成血小板低下症狀產生。我們利用人類的白血病細胞株 (HEL)、臍帶血單核球細胞、臍帶血幹細胞 (CD34+ cells) 以及老鼠骨髓中的單核球細胞進行體外巨核細胞分化實驗,我們觀察到致死毒素是透過殺死巨核細胞或抑制巨核細胞的分化來抑制血小板生成,而造成血小板生成低下。此外,我們藉由前注射血小板生成素來提升血小板的生成並且觀察到致死毒素所造成的小鼠死亡有明顯的減少。從我們的實驗結果可以得知,致死毒素所造成的致病機轉與其抑制血小板生成有關。
Megakaryocytes are the precursor cells of platelets and critical for maintaining coagulant functions. Thrombopoietin (TPO), the ligand for c-mpl, stimulates proliferation of committed megakaryocytic progenitors and induces maturation of megakaryocytes. In the first part of this study, we established the in vitro megakaryocyte differentiation system from embryonic stem cells co-cultured with OP9 stromal cells. OP9 stromal cells, derived from mouse bone marrow, are useful feeder cells for hematopoiesis in ES cell co-culture systems. However, OP9 is a primary cell line that has a short in vitro life span. Herein, we immortalized primary OP9 cells with the E6 and E7 genes from human papillomavirus type 16. The immortalized OP9 stromal cells were able to extend their lifespan beyond 42 passages and retain their ability to induce megakaryocyte differentiation from embryonic stem cells. In the second part of this study we examined the pathogenic effect of Bacillus anthracis lethal toxin (LT) on megakaryopoiesis. Anthrax LT is the major virulence factor of B. anthracis. In our previous study, we investigated the suppression of platelet function that was associated with LT-induced mortality and observed that LT injection reduces platelet counts prior to death in mice. However, the mechanism responsible for this effect remains unclear. LT is known to inactivate cellular-mitogen-activated protein kinase (MEK) pathways. Previous studies have also shown that the MEK1/2-extracellular signal-regulated kinase (ERK) pathway is critical for megakaryocytic differentiation. Therefore, we hypothesize that LT might inhibit the progenitor cells of platelets, and thereby induce thrombocytopenic responses. We employed the human eruthroleukemia (HEL) cell line, human cord blood-derived mononuclear cells, CD34+ cells,and mouse bone marrow mononuclear cells to perform in vitro megakaryocytic differentiation. These results show that LT suppresses megakaryopoiesis by killing the megakaryocytes and inhibiting megakaryocytic differentiation. Pretreatments with TPO to up-regulate megakaryopoiesis considerably reduced LT-mediated mortality in mice. Our data indicate that LT-suppressed megakaryopoiesis is involved in LT-mediated pathogenesis.
中文摘要 ........................................................................................ I
Abstract ...................................................................................... III
Contents ...................................................................................... V
Introduction .................................................................................. 1
Megakaryopoiesis .............................................................................. 1
Megakaryocyte development ..................................................................... 1
TPO signaling in megakaryopoiesis ............................................................. 2
Megakaryocytic in vitro differentiation ....................................................... 3
Embryonic stem cell ........................................................................... 4
Megakaryocytes differentiated from ES cells ................................................... 5
Megakaryocytes differentiated from cord blood cells ........................................... 5
Megakaryocytes differentiated from bone marrow ................................................ 6
Megakaryocytes differentiated from cell lines ................................................. 7
Anthrax ....................................................................................... 7
The routes of infection of Bacillus anthracis ................................................. 8
The virulence factors of Bacillus anthracis ................................................... 8
How the anthrax toxins interfere with the host signaling pathway .............................. 9
The target cells of anthrax lethal toxin....................................................... 10
Aims of this study ............................................................................ 10
Materials and methods ......................................................................... 13
Cell culture .................................................................................. 13
Preparation of primary MEFs ................................................................... 14
Retroviral vector transduction ................................................................ 15
Tumorigenesis Assay ........................................................................... 15
Megakaryocytic differentiation of ES cells co-cultured with OP9/I-OP9 ......................... 16
RNA isolation and RT-PCR ...................................................................... 17
Acetylcholinesterase staining ................................................................. 17
Immunofluorescence staining ................................................................... 18
Cytotoxicity assay ............................................................................ 18
TPA-induced megakaryocytic differentiation in HEL cells ....................................... 19
Bromodeoxyuridine incorporation assay ......................................................... 19
CFU-MK assay .................................................................................. 20
Preparation of human umbilical mesenchymal stem cells ..........................................20
Megakaryocytic differentiation from cord blood hematopoietic stem cells ....................... 21
Flow cytometric analysis .......................................................................22
DNA content analysis ...........................................................................23
Platelet isolation and activation analysis .................................................... 23
Megakaryocytic differentiation from mouse bone marrow ......................................... 24
Western blotting .............................................................................. 24
TPO treatments on the reduction of LT-induced mortality ....................................... 25
DNA content analysis of megakaryocytes in bone marrow ......................................... 26
Statistics .................................................................................... 27
Results ....................................................................................... 28
Establishment of I-OP9 cells by transducing retroviral vector LXSN16E6E7 ...................... 28
I-OP9 cells increase life span and are tumorigenic ............................................ 29
Characterization of megakaryocytic differentiation from ES cells-morphology examination ................................................................................... 30
Characterization of megakaryocytic differentiation from ES cells-specific markers expression and AchE staining ...................................................................................... 31
Lethal toxin and its cytotoxic activity ....................................................... 32
Effect of LT on megakaryocytic differentiation in HEL cells ................................... 32
LT challenges inhibit human megakaryocyte colony formation .................................... 34
Death of premature/mature megakaryocytes is involved in LT-mediated suppression in a cord-blood-derived CD34+ cell model .................................................................................... 35
LT leads to cell death of megakaryocytes in a model using mouse bone marrow mononuclear cells ......................................................................................... 37
Thrombopoietin treatments reduce LT-mediated mortality, thrombocytopenia, and megakaryopoiesis suppression in mice .......................................................................................... 38
Discussion .................................................................................... 41
Future work ................................................................................... 47
Table 1. Primers used for PCR ................................................................. 48
Figure 1. Detection of E6/E7 mRNA expression in OP9 stromal cells after gene transfer through LXSN16E6E7 retroviral vector. ............................................................................ 49
Figure 2. Proliferative ability of I-OP9 and normal OP9 cells. ................................ 50
Figure 3. Tumorigenecity of I-OP9 cells. ...................................................... 51
Figure 4. Three stages of megakartocytic differentiation protocol by ES/OP9 co-culture system. ....................................................................................... 52
Figure 5. ES cells co-culture with OP9/I-OP9 to induce megakaryocytic differentiation. .............................................................................. 53
Figure 6. Expression of specific genes for megakaryocytes were detected by RT-PCR. .......................................................................................... 54
Figure 7. Expression of cell surface markers on megakaryocytes derived from ES cells co-cultured with OP9/I-OP9 cells. ........................................................................................ 55
Figure 8. Characterization of megakaryocytes derived from ES cells by AchE staining............ 56
Figure 9. Cytotoxictiy of LT on J774A.1 cells. ................................................ 57
Figure 10. LT treatments affect cell size and granularity on TPA-treated HEL cells. ........... 58
Figure 11. Suppressive effects of LT on CD41 expression in TPA-treated HEL cells. ........................................................................................ 59
Figure 12. Polyploid analysis of HEL cells by flow cytometry. ................................. 60
Figure 13. Effects of LT on BrdU incorporation in TPA treated-HEL cells. .......................61
Figure 14. Suppressive effect of LT on CFU-MK formation. ...................................... 62
Figure 15. The experiment outline of in vitro megakaryocytic differentiation using human cord blood-derived CD34+ cells. .................................................................................. 63
Figure 16. Suppressive effect of LT on in vitro megakaryocytic differentiation from cord blood CD34+ cells. ........................................................................................ 64
Figure 17. Quantitative results on the percentage of CD61+ and CD61+/CD42b+ cells in R1 regions. ...................................................................................... 65
Figure 18. LT mediated inhibition the expression of pERK on differentiated cells. ............. 66
Figure 19. LT treatments induced the hypoploid cells during the in vitro differentiation. .............................................................................. 68
Figure 20.Treatments of protective antigen (PA) did not induce apoptosis of human cord blood-derived megakaryocytes. ............................................................................... 69
Figure 21. Platelet isolation and activation test. ............................................ 70
Figure 22. Characterizations of LT-induced hypoploid cells by platelet activation agonists. ..................................................................................... 71
Figure 23. The experimental outline of LT treatments on mouse bone marrow cells. 72
Figure 24. Suppressive effect of LT on mouse bone marrow cells. ............................... 73
Figure 25. TPO treatments reduced LT-mediated mortality in mice. .............................. 74
Figure 26. TPO pretreatments ameliorated LT-mediated thrombocytopenia in mice.................. 75
Figure 27. TPO pretreatments ameliorated LT-mediated megakaryopoiesis suppression in mice. ......................................................................................... 76
Appendices .................................................................................... 77
Reference ..................................................................................... 79
1 Matsumura, I. & Kanakura, Y. Molecular control of megakaryopoiesis and thrombopoiesis. International journal of hematology 75, 473-483 (2002).
2 Deutsch, V. R. & Tomer, A. Megakaryocyte development and platelet production. British journal of haematology 134, 453-466, doi:10.1111/j.1365-2141.2006.06215.x (2006).
3 Szalai, G., LaRue, A. C. & Watson, D. K. Molecular mechanisms of megakaryopoiesis. Cellular and molecular life sciences : CMLS 63, 2460-2476, doi:10.1007/s00018-006-6190-8 (2006).
4 Wen, Q., Goldenson, B. & Crispino, J. D. Normal and malignant megakaryopoiesis. Expert reviews in molecular medicine 13, e32, doi:10.1017/s1462399411002043 (2011).
5 Hodohara, K., Fujii, N., Yamamoto, N. & Kaushansky, K. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood 95, 769-775 (2000).
6 Roth, G. J., Yagi, M. & Bastian, L. S. The platelet glycoprotein Ib-V-IX system: regulation of gene expression. Stem cells 14 Suppl 1, 188-193, doi:10.1002/stem.5530140724 (1996).
7 Pang, L., Weiss, M. J. & Poncz, M. Megakaryocyte biology and related disorders. The Journal of clinical investigation 115, 3332-3338, doi:10.1172/jci26720 (2005).
8 Nutt, S. L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. The Journal of experimental medicine 201, 221-231, doi:10.1084/jem.20041535 (2005).
9 Briddell, R. A., Brandt, J. E., Straneva, J. E., Srour, E. F. & Hoffman, R. Characterization of the human burst-forming unit-megakaryocyte. Blood 74, 145-151 (1989).
10 Bluteau, D. et al. Regulation of megakaryocyte maturation and platelet formation. Journal of thrombosis and haemostasis : JTH 7 Suppl 1, 227-234, doi:10.1111/j.1538-7836.2009.03398.x (2009).
11 Miyazaki, H. Physiologic role of TPO in thrombopoiesis. Stem cells 14 Suppl 1, 133-138, doi:10.1002/stem.5530140717 (1996).
12 Fox, N., Priestley, G., Papayannopoulou, T. & Kaushansky, K. Thrombopoietin expands hematopoietic stem cells after transplantation. The Journal of clinical investigation 110, 389-394, doi:10.1172/jci15430 (2002).
13 Kaushansky, K. The molecular mechanisms that control thrombopoiesis. The
Journal of clinical investigation 115, 3339-3347, doi:10.1172/jci26674 (2005).
14 Kirito, K. & Kaushansky, K. Transcriptional regulation of megakaryopoiesis: thrombopoietin signaling and nuclear factors. Current opinion in hematology 13, 151-156, doi:10.1097/01.moh.0000219660.03657.4b (2006).
15 Muntean, A. G. et al. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood 109, 5199-5207, doi:10.1182/blood-2006-11-059378 (2007).
16 Lorsbach, R. B. et al. Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103, 2522-2529, doi:10.1182/blood-2003-07-2439 (2004).
17 Hart, A. et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13, 167-177 (2000).
18 Athanasiou, M., Mavrothalassitis, G., Sun-Hoffman, L. & Blair, D. G. FLI-1 is a suppressor of erythroid differentiation in human hematopoietic cells. Leukemia 14, 439-445 (2000).
19 Guerriero, R. et al. Unilineage megakaryocytic proliferation and differentiation of purified hematopoietic progenitors in serum-free liquid culture. Blood 86, 3725-3736 (1995).
20 Hagiwara, T., Kodama, I., Horie, K., Kato, T. & Miyazaki, H. Proliferative properties of human umbilical cord blood megakaryocyte progenitor cells to human thrombopoietin. Experimental hematology 26, 228-235 (1998).
21 Debili, N. et al. The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocyte progenitors. Blood 86, 2516-2525 (1995).
22 Fujimoto, T. T., Kohata, S., Suzuki, H., Miyazaki, H. & Fujimura, K. Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood 102, 4044-4051, doi:10.1182/blood-2003-06-1773 (2003).
23 Donovan, P. J. & Gearhart, J. The end of the beginning for pluripotent stem cells. Nature 414, 92-97, doi:10.1038/35102154 (2001).
24 Rao, M. S. & Mattson, M. P. Stem cells and aging: expanding the possibilities. Mechanisms of ageing and development 122, 713-734 (2001).
25 Pesce, M. & Scholer, H. R. Oct-4: control of totipotency and germline determination. Molecular reproduction and development 55, 452-457, doi:10.1002/(sici)1098-2795(200004)55:4<452::aid-mrd14>3.0.co;2-s (2000).
26 Armstrong, L., Lako, M., Lincoln, J., Cairns, P. M. & Hole, N. mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mechanisms of development 97, 109-116 (2000).
27 De Felici, M. & Pesce, M. Growth factors in mouse primordial germ cell migration and proliferation. Progress in growth factor research 5, 135-143 (1994).
28 Pedersen, R. A. Studies of in vitro differentiation with embryonic stem cells. Reproduction, fertility, and development 6, 543-552 (1994).
29 Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391 (1998).
30 Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684-687, doi:10.1038/336684a0 (1988).
31 Bradley, A. Embryonic stem cells: proliferation and differentiation. Current opinion in cell biology 2, 1013-1017 (1990).
32 Martin, G. R., Wiley, L. M. & Damjanov, I. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Developmental biology 61, 230-244 (1977).
33 Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M. V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Molecular and cellular biology 13, 473-486 (1993).
34 Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098-1101 (1994).
35 Palacios, R., Golunski, E. & Samaridis, J. In vitro generation of hematopoietic stem cells from an embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America 92, 7530-7534 (1995).
36 Kitajima, K., Tanaka, M., Zheng, J., Sakai-Ogawa, E. & Nakano, T. In vitro differentiation of mouse embryonic stem cells to hematopoietic cells on an OP9 stromal cell monolayer. Methods in enzymology 365, 72-83 (2003).
37 Lu, L. et al. Comparative effects of suppressive cytokines on isolated single CD34(3+) stem/progenitor cells from human bone marrow and umbilical cord blood plated with and without serum. Experimental hematology 21, 1442-1446 (1993).
38 Hows, J. M. et al. Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet 340, 73-76 (1992).
39 Tao, H., Gaudry, L., Rice, A. & Chong, B. Cord blood is better than bone marrow for generating megakaryocytic progenitor cells. Experimental hematology 27, 293-301 (1999).
40 Bornstein, R., Garcia-Vela, J., Gilsanz, F., Auray, C. & Cales, C. Cord blood megakaryocytes do not complete maturation, as indicated by impaired establishment of endomitosis and low expression of G1/S cyclins upon thrombopoietin-induced differentiation. British journal of haematology 114, 458-465 (2001).
41 Mattia, G. et al. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 99, 888-897 (2002).
42 Nakorn, T. N., Miyamoto, T. & Weissman, I. L. Characterization of mouse clonogenic megakaryocyte progenitors. Proceedings of the National Academy of Sciences of the United States of America 100, 205-210, doi:10.1073/pnas.262655099 (2003).
43 de Sauvage, F. J. et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369, 533-538, doi:10.1038/369533a0 (1994).
44 Martin, P. & Papayannopoulou, T. HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 216, 1233-1235 (1982).
45 Tabilio, A. et al. Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL). The EMBO journal 3, 453-459 (1984).
46 Ogura, M. et al. Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 66, 1384-1392 (1985).
47 Mock, M. & Mignot, T. Anthrax toxins and the host: a story of intimacy. Cellular microbiology 5, 15-23 (2003).
48 Banks, D. J., Ward, S. C. & Bradley, K. A. New insights into the functions of anthrax toxin. Expert Rev Mol Med 8, 1-18, doi:S1462399406010714 [pii]
10.1017/S1462399406010714 (2006).
49 Tournier, J. N., Quesnel-Hellmann, A., Cleret, A. & Vidal, D. R. Contribution of toxins to the pathogenesis of inhalational anthrax. Cellular microbiology 9, 555-565, doi:10.1111/j.1462-5822.2006.00866.x (2007).
50 Mock, M. & Fouet, A. Anthrax. Annu Rev Microbiol 55, 647-671 (2001).
51 Hicks, C. W., Sweeney, D. A., Cui, X., Li, Y. & Eichacker, P. Q. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive care medicine 38, 1092-1104, doi:10.1007/s00134-012-2541-0 (2012).
52 Abrami, L., Reig, N. & van der Goot, F. G. Anthrax toxin: the long and winding road that leads to the kill. Trends in microbiology 13, 72-78, doi:10.1016/j.tim.2004.12.004 (2005).
53 Moayeri, M. & Leppla, S. H. The roles of anthrax toxin in pathogenesis. Current opinion in microbiology 7, 19-24, doi:10.1016/j.mib.2003.12.001 (2004).
54 Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. Identification of the cellular receptor for anthrax toxin. Nature 414, 225-229, doi:10.1038/n35101999 (2001).
55 Scobie, H. M., Rainey, G. J., Bradley, K. A. & Young, J. A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proceedings of the National Academy of Sciences of the United States of America 100, 5170-5174, doi:10.1073/pnas.0431098100 (2003).
56 Leppla, S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America 79, 3162-3166 (1982).
57 Bardwell, A. J., Abdollahi, M. & Bardwell, L. Anthrax lethal factor-cleavage products of MAPK (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs. Biochem J 378, 569-577 (2004).
58 Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734-737 (1998).
59 Hagemann, C. & Blank, J. L. The ups and downs of MEK kinase interactions. Cell Signal 13, 863-875 (2001).
60 Wada, T. & Penninger, J. M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838-2849 (2004).
61 Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. The Journal of biological chemistry 261, 7123-7126 (1986).
62 Abramova, F. A., Grinberg, L. M., Yampolskaya, O. V. & Walker, D. H. Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proceedings of the National Academy of Sciences of the United States of America 90, 2291-2294 (1993).
63 Kau, J. H. et al. Antiplatelet activities of anthrax lethal toxin are associated with suppressed p42/44 and p38 mitogen-activated protein kinase pathways in the platelets. The Journal of infectious diseases 192, 1465-1474 (2005).
64 Chauncey, K. M., Szarowicz, S. E., Sidhu, G. S., During, R. L. & Southwick, F. S. Anthrax lethal and edema toxins fail to directly impair human platelet function. The Journal of infectious diseases 205, 453-457, doi:10.1093/infdis/jir763 (2012).
65 Geddis, A. E. Congenital amegakaryocytic thrombocytopenia. Pediatric blood & cancer 57, 199-203, doi:10.1002/pbc.22927 (2011).
66 Ten Cate, H. Trombocytopenia: one of the markers of disseminated intravascular coagulation. Pathophysiology of haemostasis and thrombosis 33, 413-416, doi:83838 (2003).
67 Rameshwar, P., Wong, E. W. & Connell, N. D. Effects by anthrax toxins on hematopoiesis: a key role for cytokines as mediators. Cytokine 57, 143-149, doi:10.1016/j.cyto.2011.10.013 (2012).
68 Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84-88, doi:10.1038/23962 (1998).
69 Miyazaki, R., Ogata, H. & Kobayashi, Y. Requirement of thrombopoietin-induced activation of ERK for megakaryocyte differentiation and of p38 for erythroid differentiation. Annals of hematology 80, 284-291 (2001).
70 Severin, S., Ghevaert, C. & Mazharian, A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. Journal of thrombosis and haemostasis : JTH 8, 17-26, doi:10.1111/j.1538-7836.2009.03658.x (2010).
71 Hung, S. C. et al. Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. International journal of cancer. Journal international du cancer 110, 313-319, doi:10.1002/ijc.20126 (2004).
72 Krneta, J. et al. Dissociation of angiogenesis and tumorigenesis in follistatin- and activin-expressing tumors. Cancer research 66, 5686-5695, doi:10.1158/0008-5472.can-05-3821 (2006).
73 Jackson, C. W. Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood 42, 413-421 (1973).
74 Kau, J. H. et al. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice. PloS one 4, e4167, doi:10.1371/journal.pone.0004167 (2009).
75 Kau, J. H. et al. Sublethal doses of anthrax lethal toxin on the suppression of macrophage phagocytosis. PloS one 5, e14289, doi:10.1371/journal.pone.0014289 (2010).
76 Ding, D. C. et al. Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of disease 27, 339-353, doi:10.1016/j.nbd.2007.06.010 (2007).
77 Yang, C. C. et al. Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PloS one 3, e3336, doi:10.1371/journal.pone.0003336 (2008).
78 Bakhshi, T. et al. Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion 48, 2638-2644, doi:TRF01926 [pii]
10.1111/j.1537-2995.2008.01926.x (2008).
79 Cortin, V., Pineault, N. & Garnier, A. Ex vivo megakaryocyte expansion and platelet production from human cord blood stem cells. Methods in molecular biology 482, 109-126, doi:10.1007/978-1-59745-060-7_7 (2009).
80 Apostolidis, P. A., Woulfe, D. S., Chavez, M., Miller, W. M. & Papoutsakis, E. T. Role of tumor suppressor p53 in megakaryopoiesis and platelet function. Experimental hematology 40, 131-142 e134, doi:10.1016/j.exphem.2011.10.006 (2012).
81 Fuhrken, P. G., Apostolidis, P. A., Lindsey, S., Miller, W. M. & Papoutsakis, E. T. Tumor suppressor protein p53 regulates megakaryocytic polyploidization and apoptosis. The Journal of biological chemistry 283, 15589-15600, doi:10.1074/jbc.M801923200 (2008).
82 Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M. & Hoogstraten-Miller, S. Retro-orbital injections in mice. Lab animal 40, 155-160, doi:10.1038/laban0511-155 (2011).
83 Inagaki, K. et al. Induction of megakaryocytopoiesis and thrombocytopoiesis by JTZ-132, a novel small molecule with thrombopoietin mimetic activities. Blood 104, 58-64, doi:10.1182/blood-2003-10-3623 (2004).
84 Abushullaih, B. A., Pestina, T. I., Srivastava, D. K., Jackson, C. W. & Daw, N. C. A schedule of recombinant Mpl ligand highly effective at preventing lethal myelosuppression in mice given carboplatin and radiation. Experimental hematology 29, 1425-1431 (2001).
85 Shibuya, K. et al. Marked improvement of thrombocytopenia in a murine model of idiopathic thrombocytopenic purpura by pegylated recombinant human megakaryocyte growth and development factor. Experimental hematology 30, 1185-1192 (2002).
86 Moayeri, M., Haines, D., Young, H. A. & Leppla, S. H. Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J Clin Invest 112, 670-682 (2003).
87 Culley, N. C., Pinson, D. M., Chakrabarty, A., Mayo, M. S. & LeVine, S. M. Pathophysiological manifestations in mice exposed to anthrax lethal toxin. Infection and immunity 73, 7006-7010, doi:10.1128/iai.73.10.7006-7010.2005(2005).
88 Walsh, J. J. et al. A case of naturally acquired inhalation anthrax: clinical care and analyses of anti-protective antigen immunoglobulin G and lethal factor. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 44, 968-971, doi:10.1086/512372 (2007).
89 Tomer, A., Harker, L. A. & Burstein, S. A. Purification of human megakaryocytes by fluorescence-activated cell sorting. Blood 70, 1735-1742 (1987).
90 Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79-82, doi:10.1038/380079a0 (1996).
91 Boyer, S. N., Wazer, D. E. & Band, V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer research 56, 4620-4624 (1996).
92 Lian, X. J. & Gallouzi, I. E. Oxidative Stress Increases the Number of Stress Granules in Senescent Cells and Triggers a Rapid Decrease in p21waf1/cip1 Translation. The Journal of biological chemistry 284, 8877-8887, doi:10.1074/jbc.M806372200 (2009).
93 Stevens, L. C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Developmental biology 21, 364-382 (1970).
94 Shivdasani, R. A., Fujiwara, Y., McDevitt, M. A. & Orkin, S. H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. The EMBO journal 16, 3965-3973, doi:10.1093/emboj/16.13.3965 (1997).
95 Paulus, J. M., Maigne, J. & Keyhani, E. Mouse megakaryocytes secrete acetylcholinesterase. Blood 58, 1100-1106 (1981).
96 Park, J. M., Greten, F. R., Li, Z. W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048-2051 (2002).
97 Long, M. W., Heffner, C. H., Williams, J. L., Peters, C. & Prochownik, E. V. Regulation of megakaryocyte phenotype in human erythroleukemia cells. The Journal of clinical investigation 85, 1072-1084, doi:10.1172/jci114538 (1990).
98 Garcia, P. & Cales, C. Endoreplication in megakaryoblastic cell lines is accompanied by sustained expression of G1/S cyclins and downregulation of cdc25C. Oncogene 13, 695-703 (1996).
99 Oswald, J. et al. Gene-expression profiling of CD34+ hematopoietic cells expanded in a collagen I matrix. Stem cells 24, 494-500, doi:10.1634/stemcells.2005-0276 (2006).
100 Shcherbina, A. & Remold-O'Donnell, E. Role of caspase in a subset of human platelet activation responses. Blood 93, 4222-4231 (1999).
101 Patel, S. R., Hartwig, J. H. & Italiano, J. E., Jr. The biogenesis of platelets from megakaryocyte proplatelets. The Journal of clinical investigation 115, 3348-3354, doi:10.1172/jci26891 (2005).
102 Sun, D. S. et al. Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost 5, 2291-2299, doi:JTH2754 [pii]
10.1111/j.1538-7836.2007.02754.x (2007).
103 Kamath, S., Blann, A. D. & Lip, G. Y. Platelet activation: assessment and quantification. European heart journal 22, 1561-1571, doi:10.1053/euhj.2000.2515 (2001).
104 Berkow, R. L. et al. Isolation of human megakaryocytes by density centrifugation and counterflow centrigual elutriation. The Journal of laboratory and clinical medicine 103, 811-818 (1984).
105 Roecklein, B. A. & Torok-Storb, B. Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 85, 997-1005 (1995).
106 Durst, M., Dzarlieva-Petrusevska, R. T., Boukamp, P., Fusenig, N. E. & Gissmann, L. Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251-256 (1987).
107 Choo, A., Padmanabhan, J., Chin, A., Fong, W. J. & Oh, S. K. Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. Journal of biotechnology 122, 130-141, doi:10.1016/j.jbiotec.2005.09.008 (2006).
108 Nees, M. et al. Human papillomavirus type 16 E6 and E7 proteins inhibit differentiation-dependent expression of transforming growth factor-beta2 in cervical keratinocytes. Cancer research 60, 4289-4298 (2000).
109 Liu, S. et al. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell host & microbe 8, 455-462, doi:10.1016/j.chom.2010.10.004 (2010).
110 Moayeri, M. & Leppla, S. H. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Molecular aspects of medicine 30, 439-455, doi:10.1016/j.mam.2009.07.003 (2009).
111 de Graaf, C. A. & Metcalf, D. Thrombopoietin and hematopoietic stem cells. Cell cycle 10, 1582-1589 (2011).
112 Kaushansky, K. Historical review: megakaryopoiesis and thrombopoiesis. Blood 111, 981-986, doi:10.1182/blood-2007-05-088500 (2008).
113 Ebbe, S. & Stohlman, F., Jr. MEGAKARYOCYTOPOIESIS IN THE RAT. Blood 26, 20-35 (1965).
114 Jernigan, J. A. et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7, 933-944 (2001).
115 Rainey, G. J. & Young, J. A. Antitoxins: novel strategies to target agents of bioterrorism. Nature reviews. Microbiology 2, 721-726, doi:10.1038/nrmicro977 (2004).
116 Jernigan, D. B. et al. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerging infectious diseases 8, 1019-1028, doi:10.3201/eid0810.020353 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top