參考文獻
1.李豔賓,張琴,賀江舟,門志麗。2010。雲芝醱酵處理對甘草渣中總黃酮提取的影響。食品科學Vol.31。NO.11。
2.林祺能。2002。固定化細胞產氫。逢甲大學化工所碩士論文。3.郭家倫,門立中,陳威希,湯俊彥。2005。我國發展生質酒精之推動策略報告。核能研究所。
4.何政坤,張淑華,陳奎宏。2005。利用生物反應器生產二次代謝物。農業生技產業季刊 1: 23-25。
5.黃恆信和黃文松。2005。生質酒精之製造與運用。核能研究所。
6.黃森元。1996。厭氣流體化床(AFB)廢水處理技術。八十五年度落實本土化高科技污染防治設備技術發表會。13-20。
7.林安秋。1984。作物之光合作用。台灣商務印書館。 211。
8.簡宣裕,張明暉,劉禎祺。2007。木質纖維素產生能源方法之探討。行政院農業委員會農業試驗所。103-114。
9.謝家琦。2003。以合成高分子膠體固定化細胞進行填充床系統醱酵產氫。逢甲大學碩士論文。台中。10.張嘉修,陳博彥,陳文明,魏毓宏,吳建一。2010。生化工程。241-338。新文京開發出版股份有限公司。台北。臺灣。
11.鄭作林,張謙裕,蕭耀基。2006。台灣甘蔗酒精醱酵產業之回顧與展望。生質能源開發與利用。台北:台大生技系。12.左峻德。2007。我國發展生質能源產業之可行性。農業生技產業季刊(9):56-61。13.蘇遠志,莊育梩,鄞雪麗。1989。利用醋酸菌之固定化細胞進行山梨糖生產之研究。國農業化學會誌(27):1-11。14.宋賢良,溫其標,朱江。2001。纖維素酶水解的研究進展。鄭州工程學院學報(22):67-84。
15.吳滕文。2003。生物產業技術概論。清大出版社。新竹。
16.王俊豪。2005。德國再生能源與生物能源之發展。農政與農情(175):78-83。17.Aiello, C., Ferrer A., Ledesma, A. 1996. Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation withTrichoderma reesei QM 9414. Bioresource Technology 57: 13-18.
18.Akkerman, I., Janssen, M., Rocha, J., Wijffels, R. H. 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27: 1195–208.
19.Ang-Hsuan, Li., Chi-Wen, Lin., Dang-Thuan, Tran. 2011. Optimizing the respons esurface for producing ethanol from avicel by Brevibacillus strain AHPC8120 . Journal of the Taiwan Institute of Chemical Engineers. JTICE-31. p. 6.
20.Antje, Potthast., Thomas, Rosenau., Jürgen, Sartori., Herbert, Sixta., Paul, Kosma. 2003. Hydrolytic processes and condensation reactions in the cellulose solvent system N,N-dimethylacetamide/lithium chloride. Part 2: degradation of cellulose. January 44. p. 7–17
21.Argiriou, T. M., Kanellakim, S., Voliotis, A. and Koutinas, A. 1996. Kissiris -supported yeast cells: high biocatalytic stability and productivity improvement by successive preservations at 0°C. J. Agric. Food. Chem 44: 4028-4031.
22.Aristidou, A. and Penttila, M. 2000. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11: 187-198.
23.Astley, O. M., Chanliaud, E. and Donald, E. 2001. Structure of Acetobacter cellulose composites in the hydrated state. International Journal of Biological Macromoecules 29 (3): 193-202.
24.Banerjee, A., Sharma, R., Chisti, Y., Banerjee, U. C. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22: 245–79.
25.Bardi, E. P. and Koutinas, A. A. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. Journal of Agriculture and Food Chemistry 42: 221-226.
26.Bardi, E., Koutinas, A. A., Kanellaki, M. 1997. Room and low temperature brewing with yeast immobilized on gluten pellets. Process Biochem 32: 691–696.
27.Bobleter, O. 1994. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19: 797–841.
28.Bodalo-Santoyo, A., Gomez-Carrasco, J. L., Gomez-Gomez, E., Bzstida -Rodriquez, J., Maximo-Martin, M. F., Hidalgo-Montesinos, A. M. 1999. Production of optically pure L-valine in fluidzed and packed bed reactors with immobilized L-aminoacylase. J Chem Technol Biotechnol 74(5): 403-408.
29.Caylak, B., Vardar, S. F. 1996. Comparison of different production processes for bioethanol. Turk J Chem 22: 351–359.
30.Chandel, A. K., Narasu, M. L., Chandrasekhar, G., Manikyam, A. and Rao, L. V. 2009. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS 3. Bioresource Technology 100 (8): 2404-2410.
31.Chandrakant, P. and Bisaria, V. S., 1998. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Critical Reviews in Biotechnology 18: 295-331.
32.Chisti, Y. 1980. An unusual hydrocarbon. J. Ramsay Society 27–28: 24–26.
33.Chum, H. L., Overend, R. P., 2001. Biomass and renewable fuels, Fuel Processing Technology 71: 187–195.
34.Clark, T. A. and Mackie, K. E. 1984. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J. Chem. Tech. Biotech. 34B. p. 101.
35.Cosgrove, D. J. 1998. Cell Walls: Structures, Biogenesis and Expansion. In Taiz L. and E. Zeiger (Eds.). In Plant Physiology. 409-443. Sinauer Associates, Inc, Sunderland.
36.Dinçer, A., Telefoncu, A. 2007. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads, Journal of Molecular Catalysis B: Enzymatic 45: 10-14.
37.Duff, Sheldon J. B., and Murray, William D., 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology 55:1-33.
38.Dunahay, T. G., Jarvis, E. E., Dais, S. S., Roessler, P. G. 1996. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58: 223–31.
39.Esser, K., Karsch, T. 1984. Bacterial ethanol production: advantages and disadvantages. Proc Biochem 19: 116-121.
40.Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M. and Kammen, D. M. 2006. Ethanol can contribute to energy and environmental goals. Science 311: 506-508.
41.Fedorov, A. S., Kosourov, S., Ghirardi, M. L., Seibert, M. 2005. Continuous H2 photoproduction by Chlamydomonas reinhardtii using a novel two-stage, sulfate-limited chemostat system. Appl Biochem Biotechnol 121-124: 403–412.
42.Fengel, D., Wegener, G. 1984. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin. food technology and nutrition. 758- 767.
43.Foody, G. M. 1988. The effects of viewing geometry on image classification, Int. J. Remote Sens 9: 1909-1915.
44.Freeman, A. 1984. Gel entrapment of whole cells and enzymes in cross-linked, prepolymerized polyacrylamide hydrazide. Ann. N. Y. Acad. Sci. 434: 418–426.
45.Galbe, M., Zacchi, G., 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol 59: 618–628.
46.Garrote, G., Dominguez, H., Parajo, J. C. 1999. Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57: 191–202.
47.Gavrilescu, M. and Chisti, Y. 2005. Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23: 471–99.
48.Ghirardi, M. L., Zhang, J. P., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E. 2000. Microalgae: a green source of renewable H2. Trends Biotechnol 18: 506–11.
49.Gobina, E. 2007. Biorefinery technologies and products (Report ID: EGY054A). Wellesley, MA: BCC Research Publications.
50.Granda, C. B., Zhu, L. and Holtzapple, M. T. 2007. Sustainable Liquid Biofuels and their Environmental Impact. Environmental Progress 26(3): 233-250.
51.Gray, K. A., Zhao, L. and Emptage, M. 2006. Bioethanol. Current Opinion in Chemical Biology 10: 141-146.
52.Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund M. F. 2007. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74: 937–53.
53.Hall, D. O.1997. Biomass Energy in Industrialized Countries: A View of the Further. Forest Ecology and Management 91: 17-45.
54.Harun, R., Jason, W. S. Y., Cherrington, T. and Danquah, M. K. 2010. Microalgal biomass as a cellulosic fermentation feedstock for bioethanol production. Renewable and Sustainable Energy Reviews. Article in press. Read 17.3.2011. Available at Sciencedirect: doi:10.1016/j.rser.2010.07.071.
55.Herrera, S. 2006. Bonkers about biofuels. Nature Biotechnology 24: 755-760.
56.Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., Foust, T. D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804–807.
57.Hong, J., Tamaki, H., Akiba, S., Yamamoto, K. and Kumagai, H. 2001. "Cloning of a gene encoding a highly stable endo-β-1,4-glucanase from Aspergillus niger and its expression in yeast," Journal of Bioscience and Bioengineering 92(5): 434-441.
58.Iguchi, M., Yamanaka, S., Budhiono, A. 2000. Bacterial cellulose – a masterpiece of nature’s arts. Journal of Materials Science 35: 261–70.
59.International Energy Agency (IEA), Renewable information 2003. IEA, Paris.
60.Iorio, G., Catapano, G., Drioli, E., Rossi, M., Rella, R., 1985. Malic enzyme immobilization in continuous capillary membrane reactors. J. Membr. Sci. 22: 317–324.
61.Irfana, M., Kanawal, M., Siikender, A., Ukram, U. 2009. Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pak. J. Bot. 41(2): 821-833.
62.Isenberg, G., 1999. Assessment of automotive fuels. Journal of Power Sources 84: 214-217.
63.Jeffries, T.W., Jin, Y. S. 2000. Ethanol and the rmotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47: 221–68.
64.John, T. 2004. Biofuels for transport. http://www.task39.org/.
65.Kadar, Z., Szengyel Z., Reczey K. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products 20: 103-110.
66.Kapdan, I. K., Kargi, F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb Technol 38: 569–82.
67.Kay, R. A. 1991. Microalgae as food and supplement. Crit Rev Food Sci Nutr 30: 555–73.
68.Kim, J., Cai, Z. J., Lee H. S., Choi G. S., Lee D. H., Jo C. 2010. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. Journal of Polymer Research 18: 739–44.
69.Kim, S., Jungand, H. C. and Pan, J. G. 2000. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Applied and Environmental Microbiology 66: 788-793.
70.Klein, G. L. and Snodgrass, W. R. 1993. Cellulose. In: Macrae R, Robinson R. K., Saddler M. J. (Eds.). Encyclopedia of food science, food technology and nutrition. London: Academic Press. p. 758–767.
71.Klinke, H. B., Ahring, B. K., Schmidt, A. S., Thomsen, A. B., 2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technology 82: 15–26.
72.Kourkoutas, Y., Bekatorou A., Banat I. M., Marchant R., Koutinas A. A. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: a review. J. Agric. Food. Microbiology 21: 377–397.
73.Lee, J., 1997. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56: 1-24.
74.Levan, S. L., Ross, R. J., Winandy, J. E. 1990. Effects of fire retardant chemicals on bending properties of wood at elevated temperatures. Research Paper FPL-RP-498. Madison, WI: U.S. Department of agriculture, Forest service, Forest Products Laboratory. p. 24.
75.Licht, F. O. 2006. World Ethanol Market: The Outlook to 2015, Tunbridge Wells, Agra Europe Special Report, UK.
76.Lin, Y. and Tanaka, S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 69: 627-642.
77.Lorenz, R. T., Cysewski, G. R. 2003. Commercial potential for Haematococcus microalga as a natural source of astaxanthin. Trends Biotechnol 18: 160–167.
78.Loukatos, P., Kiaris, M., Ligas, I., Bourgos, G., Kanellaki, M., Komaitis, M., Koutinas A. A. 2000. Continuous wine-making by γ-alumina-support biocatalyst. Quality of the wine and distil¬lates. Appl. Biochem. Biotechnol 89: 1-13.
79.Lynd, L. R. 1996. Overview and evaluation of fuel ethanol production from cellulosic biomass: technology, economics, the environ-ment, and policy. Annu Rev Energy Environ 21: 403 – 465.
80.Mabee, W. E. 2007. Policy Options to Support Biofuel Production.Biofuels. p. 329-357.
81.MacDonald, T., Yowell, G., McCormack, M. 2001. Staff report. US ethanol industry production capacity outlook. California energy commission. Available at http://www.energy.ca.gov/reports/ 2001-08-29_600-01-017.PDF
82.Margaritis, A. and Merchant, F.J.A. 1984. Advances in ethanol production using immobilized cell systems. Crit. Rev. Biotechnol 2: 339–393.
83.Martin, A. M. 1991. Bioconversion of Waste Materials to Industrial Products. Elsevier Applied Science. p. 63–116. London, New York.
84.Martin, C., Jo¨nsson, L. J., 2003. Comparison of the resistance of industrialand laboratory strains of Saccharomyces and Zygosaccharomyces tolignocellulosic -derived fermentation inhibitors. Enzyme MicrobialTechnol 32: 386–395.
85.McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37-46.
86.McMillan, J. D. 1994. Enyzmatic Conversion of Biomass for Fuels Production. p. 294-324. In M. E.
87.Melis, A. 2002. Green alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 27: 1217–28.
88.Metting, B. and Pyne, J.W. 1986. Biologically-active compounds from microalgae. Enzyme Microb Technol 8: 386–94.
89.Metzger, P. and Largeau, C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66: 486–96.
90.Miller, W. M., Wilke, C. R. and Blanch, H. W. 1987. Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture. Journal of Cellular Physiology 132: 524–530. doi: 10.1002/jcp.1041320315.
91.Millis, N. F. 1956. A study of the cider-sickness bacillus-a new variety of Zymomonas anaerobia. The Journal of General Microbiology 15: 521-528.
92.Minihane, B. J. and Brown, D. E. 1986. Fed-batch culture technology, Biotechnol. Adv 4: 207–218.
93.Mohammad, J., Taherzadeh M. J. and Keikhosro, karimi. 2007. Acid-Based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3): 472-499.
94.Monique, H., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., Turkenburg, W. 2003. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119 –133.
95.Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol 96: 673–686.
96.Nagle, N., Lemke, P. 1990. Production of methyl-ester fuel from microalgae. Appl Biochem Biotechnol 24–5:355–61.
97.Natori, Y., Nagasaki, T. 1981. Enhancement of Coenzyme Q10 Accumulation by Mutation and Effects of Medium Components on the Formation of Coenzyme Q Homologs by Pseudomonas N842 and Mutants, Agric.Biol. Chem. 45, 10, 2175-2182.
98.Nguyen, T. H. 2006. Selection and improvement of strains of Acetobacter xylinum to synthesize bacterial cellulose in production and application at pilot scale. Ho Chi Minh City, Vietnam: The University of Natural Sciences- Ho Chi Minh City National University, PhD Thesis.
99.Noelia, I. 2010. Fermentation: Gas Analysis. Aponte Silva. The University of Puerto Rico Mayaguez Campus.
100.Nussinovitch, A., Nussinovitch, M., Shapira, R., Gershon, Z., 1994.
101.Influence of immobilization of bacteria, yeasts and fungal spores on the mechanical properties of agar and alginate gels. Food Hydrocol 8: 361–372.
102.Ogbonna, J. C., Tomiyama, S., Liu, Y. C., Tanaka, H. 1997. Efficient
103.productionof ethanol by cells immobilized in Loofa (Luffa cylindrica) sponge. J. Ferment. Bioeng. 84: 271–274.
104.Olentine, C. G. 1986. Ingredient profile: Distillers feeds. Proceedings of
105.the Distillers Feed Conference. Distillers Feed Research Council, Cincinnati, OH. p. 12-24.
106.Otero, J. M., Panagiotou, G., Olsson, L. 2007. Fueling Industrial Biotechnology Growth with bioethanol. Adv Biochem Eng Biotechnol 108. p. 1-40.
107.Palmqvist, E., Hahn-Hagerdal, B., 2000. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanism of inhibition. Bioresour. Technol. 74, 25–33.
108.Panesar, P. S., Marwaha, S. S. and Kennedy, J. F. 2006. Zymomonas mobilis: an alternative ethanol producer. Journal of Chemical Technology and Biotechnology 81: 623-635.
109.Parsons, T. R., Maita, Y. and Lalli, C. M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press. Oxford. p. 173 .
110.Phisalaphong, M., Budiraharjo, R., Bangrak, P., Mongkolkajit,J., Limtong, S. 2007. Alginate-loofa as carrier matrix for ethanol production . J Biosci Bioeng 104: 214-217.
111.Phoowit Bangrak, Savitree Limtong, Muenduen Phisalaphong. 2011.Continuous ethanol production using immobilized yeast cells entrapped in loffa reinforced alginate carriers. Brazilian Journal of microbiology 42: 676-684.
112.Prasad, S., Singh, A. and Joshi, H. C. 2007. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources Conservation and Recycling 50: 1-39.
113.Rezaee, A., Godini, H. and Bakhtou, H. 2008. Microbial cellulose as support material for the immobilization of denitrifying bacteria, Environmental Engineering and Management Journal 7 (5): 589-594.
114.Roessler, P. G., Brown, L. M., Dunahay, T. G., Heacox, D. A., Jarvis, E. E., Schneider, J. C. 1994. Genetic-engineering approaches for enhanced production of biodiesel fuel from microalgae. ACS Symp Ser 566:255–270.
115.Rosillo-Calle, F., Cortez, L. 1998. Towards proalcohol II: a review of the Brazilian bioethanol programme. Biomass Bioenergy 14: 115 – 124.
116.Saha, B. C. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology 30: 279-291.
117.Sánchez-Mirón, A., Cerón-García, M. C., Contreras-Gómez, A., García -Camacho, F., Molina-Grima, E., Chisti, Y. 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Engineering Journal 16: 287–97.
118.Sawayama, S., Inoue, S., Dote, Y., Yokoyama, S. Y. 1995. CO2 fixation and oil production through microalga. Energy Convers Manag 36: 729–31.
119.Schwartz, R. E. 1990. Pharmaceuticals from cultured algae. J Ind Microbiol 5: 113–23.
120.Schwarz, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56(5–6): 634–49.
121.Serafica, G. C. 1997. Production of bacterial cellulose using a rotating disk film bioreactor by Acetobacter xylinum. New York, America: Rensselaer Polytechnic Institute, PhD Thesis.
122.Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A look back at the U.S. Department of Energy's Aquatic Species Program—biodiesel from algae. National Renewable Energy Laboratory, Golden, CO. Report NREL/ TP-580–24190.
123.Shimizu, Y. 1996. Microalgal metabolites: a new perspective. Annu Rev Microbiol 50: 431–65.
124.Singh, S., Kate, B. N., Banerjee, U. C. 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25: 73–95.
125.Siro, I. and Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459–94.
126.Sjostrom, E. 1981. Wood Chemistry Fundamentals and Applications. p. 49. New York: Academic Press.
127.Sokolnicki, A. M., Fisher, R. J., Harrah, T. P., Kaplan, D. L. 2006. Permeability of bacterial cellulose membranes. Journal of Membrane Science 272: 15–27.
128.Solomon, B. D., Barnes, J. R. and Halvorsen, K. E. 2007. Grain and cellulosic ethanol: History, economics, and energy policy. Biomass & Bioenergy 31(6): 416-425.
129.Son, H. J., Heo, M. S., Kim, Y. G., Lee, S. J. 2001. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnology and Applied Biochemistry 33: 1–5.
130.Stewart, G. G., Russel, I. 1986. One hundred years of yeast research and development in the brewing industry. J. Inst. Brew 92: 537–558.
131.Strehaiano, P., Ramon-Portugal, F. and Taillandier, P. 2006. Yeasts as biocatalysts. In: Querol, A. and Fleet, G. (Eds.). Yeasts in food and beverages. p. 243-284. Berlin: Springer-Verlag.
132.Sun Y., Cheng J. Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83(1): 1-11.
133.Szczodrak, 1988. The enzymatic-hydrolysis and fermentation of pretreated wheat straw to ethanol biotechnol. Bioent 32: 771-776.
134.Szczodrak, J., and Fiedurek, J. 1996. Technology for conversion of lignocellulosic biomass to ethanol. Biomass and Bioenergy 10: 367-375.
135.Takaya, M., Matsumoto, N., Yanase, H., 2002. Characterization of membrane bioreactor for dry wine production. J. Biosci. Bioeng 93: 240–244.
136.Ton, N. M. N., Nguyen, M. D., Pham, T. T. H. and Le, V. V. M. 2010. Influence of initial pH and sulfur dioxide content in must on wine fermentation by immobilized yeast in bacterial cellulose. International Food Research Journal 17 (3): 743-749.
137.van den Broek, R. 2000. Sustainability of biomass electricity systems : an assessment of costs, macro-economic and environmental impacts in Nicaragua, Ireland and the Netherlands. Utrecht University. p. 215.
138.van Zyl, W. H., Lynd, L. R., Den Haan, R. and McBride, J. E. 2007. Consolidated Bioprocessing for Bioethanol Production Using Saccharomyces cerevisiae. Advances in Biochemical Engineering Biotechnology, Vol.108. p. 205-235.
139.Verstrepen, K. J., Derdelinckx, G., Delvaux, F. R. 2004. Esters in beer – part 3: Why do Yeast cells produce fruity flavors: the physiological role of acetate ester synthesis, Cerevisia 1. p. 19-24.
140.von Blottnitz, H. and Curran, M. A. 2007. A review of assessments conducted on bioethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of Cleaner Production 15: 607-619.
141.Wang, Y. and McNeil, B. 1996. Scleroglucan. Critical Reviews in Biotechnology. 16(3): 185-215.
142.Ward, O. P. and Singh A. 2002. Bioethanol technology: Development and perspectives. Adv. Applied Microbiol 51: 53-80.
143.Wheals A. E., Basso, L. C., Alves D. M. G., Amorim, H. V. 1999. Fuel ethanol after 25 years. Trends Biotechnol 17: 482 – 486.
144.Winandy, J. E. 1995. Effects of fire retardant treatments after 19 months of exposure at 150F (66C). Res. Note FPL-RN-0264. U.S. Department of agriculture, Forest Service, Forest Products Laboratory, Madison, WI. p. 13.
145.Wu, C. W., Chen, R. H., Pu, J. Y., Lin, T. H. 2004. The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline-blended fuels. Atmospheric Environment 38: 7093-7100.
146.Wu, S. C., Liu, C. C., Lian, W. C. 2004. Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development. Vaccine 22: 3858-3864.
147.Wyman, C. E. 1999. BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges. Annual Review of Energy and the Environment 24: 189-226.
148.Xu, J. and S. Liu, 2009. Optimization of ethanol production from hot-water extracts of sugar maple chips. Renewable Energy 34: 2353-2356.
149.Yang, B., Wyman, C. E. 2008. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Bior 2: 26–40.
150.Yu, H. and Rittmann, B. E. 1997. Predicting bed expansion and phase holdups for three-phase fluidized-bed reactors with and without biofilm. Water Research 31: 2604-2616.
151.Yu, J., Zhang, X. and Tan, T. 2007. “An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production,” J. Biotechnol 129: 415–420.
152.Yu, Jianliang., Zhang, Xu. and Tan, Tianwei. 2009. Optimization of media conditions for the production of ethanol from sweet sorghum juice by immobilized Saccharomyces cerevisiae. Biomass and Bioenergy 33: 521-526.
153.Yu, Z. and Zhang, H. 2003. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresource Technology 90: 95-100.
154.Zaldivar, J., Nielsen, J., Olsson, L. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56: 17 – 34.
155.Zhang, Y. H. P. and Lynd, L. R. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng 88 (7): 797–824.