跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 20:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:董佳仁
研究生(外文):Jia Zen Tong
論文名稱:氧在介面的加入對鋁/鉻薄膜與氧化銦錫玻璃結合強度的影響
論文名稱(外文):Effect of Interfacial Oxygen on Adhesion Strength Between Al/Cr and Indium-Tin-Oxide(ITO) Thin Film Coated Glass
指導教授:吳宗明吳宗明引用關係
指導教授(外文):Tzong-Mzng Wu
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:83
中文關鍵詞:Al/Cr金屬化薄膜附著力介面滲氧濺鍍介面特性
外文關鍵詞:Al/Cr MetallizationThin film adhesionInterfacial oxygenSputteringInterface characterization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1296
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:2
在電子及光電元件的製造及構裝上,經常遭遇氧化膜(物)表面的金屬化問題。一般而言,此金屬化均以金屬薄膜行之。因此,在薄膜化的過程當中,金屬膜與氧化物間的結合力,被視為金屬化之成功與否的重要指數。此種較高的結合力之介面能承受較高的機械應力,在可信度的測試方面,通常代表較高的可信度。
在液晶顯示器中,氧化銦錫(ITO)玻璃是主要之組件之一,雖然它的主要功用是導電與透視,但在先進的晶粒-玻璃(Chip -on-glass)構裝上卻是重要的模組基板。由於IC晶片無法直接接合於玻璃基板上,氧化銦錫玻璃的薄膜金屬化成為構裝製程上之一重要步驟。一般製程上,鋁薄膜常被用於提供電子導電性及鍵結性,而鉻薄膜則鍍在鋁與玻璃間以增加金屬膜之結合力。根據先前的研究,此種複合鍍層仍會有結合力不足的問題,因而產生構裝後可信度之疑慮,因此,我們在介面滲氧以提高金屬/氧化膜(物)之介面黏著,所以元件的可靠性可依賴著氧化物與氧化物間之鍵結強度得到改善。
本實驗藉由不同的鍍膜參數(基板偏壓、氧流量)探討其對Cr/ITO及所形成氧化物介面之影響;經實驗證實在施以一基板偏壓,使靶材原子有較高的移動力,讓成長的結晶膜受到帶有數百eV的能量粒子的轟擊,而使得薄膜因原子槌擊效應(atomic peening)而產生壓應力,且隨著偏壓的上升至-80V,薄膜的壓應力越大、晶粒尺寸越小、薄膜內的缺陷越多;而後由於基板偏壓的增加,使得轟擊基板的帶電粒子能量也隨偏壓大小升高,使得基板溫度在一連串高能量轟擊下升高,殘餘應力也因到達某一程度後便會因原子擴散而下降。我們發現基板偏壓-110V時有最小的內應力。
當此薄膜實際應用時,其機械性質亦格外重要。我們藉由在鉻與氧化銦錫之間注入不同含量的氧以增強金屬膜之結合力,實驗中利用拉力試驗來研究結合力與介面氧含量的關係,我們發現氧流量6sccm時,氧化物厚度達最大值375Å,且為最佳之附著力,這是因為槌擊效應使得氧化物表面粗糙度變大,且因氧流量增加,氧空位減少,避免晶格失序(disorder)或扭曲的現象,減少薄膜內殘留之張應力,故有較佳之附著性。同時藉由表面分析的儀器(AES,XPS)我們可發現介面氧化物是Cr2O3,而由AES縱深輪廓圖可清楚的看出介面中間層的變化,使我們清楚地觀察氧流量與中間氧化層的關係。接著我們在鉻薄膜上沉積不同厚度的鋁薄膜,並經拉力試驗及硬度測試後,發現厚度1.0μm的鋁薄膜有最佳的硬度及抗拉強度。
Metallization of oxide surfaces using aluminum(Al)or gold(Au)is a key process in the fabrication or packaging of electronic and optoelectronic devices. Since these metal thin films provide the electrical and mechanical connection, the adhesion between metal thin films and oxide layer is one of the main concerns in the processing. Higher adhesion strength of metal thin film to oxide surface normally leads to high mechanical reliability of devices. Al thin film with Cr interlayer has been used as a composite layer to metallize ITO-coated glass. The top Al layer provides bondability and electrical conductivity, while the Cr layer is inserted to provide adhesion strength . From a previous study, it is well known that the adhesion between Al/Cr and ITO glass needs to be increased in order to sustain some thermal and mechanical tests.
In order to enhance the adhesion between the Al/Cr and ITO glass, oxygen interface doping at the Cr - ITO interface has been proposed in this study. Various deposition parameters(bias, oxygen flow rate)have been used to determine the optimal condition for thin film deposition. From the results of compressive stress and crystalline size, they indicate the optimal bias voltages are in the range of —40 to —80V. The maximum improvement in adhesion strength can be obtained as the oxygen flow rate at 6 sccm. The structure and morphology of this change can be studied by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).
總 目 錄
中文摘要Ⅰ
英文摘要Ⅲ
誌 謝Ⅳ
總 目 錄V
圖 目 錄Ⅶ
表 目 錄Ⅹ
第一章 序論01
1-1 前言01
1-2 研究動機03
1-3 研究方向04
第二章 理論基礎與文獻回顧05
2-1 電漿理論05
2-2 濺鍍10
2-2-1 射頻放電10
2-2-2 偏壓濺鍍11
2-2-3 平衡式磁控濺鍍12
2-2-4 非平衡式磁控濺鍍12
2-2-5 反應性濺鍍14
2-3 濺鍍機構15
2-4 薄膜成核成長理論15
2-5 薄膜的附著類型17
2-6 附著力的性質20
2-7 影響附著力的因素21
2-8 硬度的表達與計算方式22
2-9 薄膜應力23
2-10 電阻量測25
第三章 實驗方法與步驟29
3-1 基板前處理29
3-2 真空系統及濺鍍製程29
3-3 實驗流程與簡介29
3-4 薄膜厚度量測31
3-5 顯微結構(SEM)及成分分析32
3-6 X-ray (XRD) 繞射分析32
3-7 電阻量測34
3-8 鍍層附著強度分析34
3-9 AES成分分析36
3-10 XPS(ESCA)成份和化學態分析36
3-11 打線及硬度測試36
第四章 結果與討論37
4-1 沉積速率的量測37
4-2 基板偏壓的影響37
4-3 氧對鉻薄膜/ITO玻璃基板介面之影響41
4-3-1 氧流量對介面附著強度之影響41
4-3-2 氧流量對中間層、膜厚成分之影響43
4-3-3 破裂面分析51
4-4 鋁薄膜厚度之變化73
第五章 結論77
參考資料78
圖 目 錄
圖2-1離子轟擊所產生不同的粒子08
圖2-2 直流輝光放電電壓與電流關係圖08
圖2-3 正常放電區的發光情況09
圖2-4 陰電極板附近的發光區及暗區之分布09
圖2-5 有無基板偏壓對薄膜生長之影響13
圖2-6 (a)平衡式磁控濺射靶(b)非平衡式磁控濺射靶13
圖2-7 The interaction between incident ion and target16
圖2-8 Sputtering rate vs partial pressure of the reactive gas : Rum = sputtering rate for pure metal, Rr = sputtering rate for nitride16
圖2-9Schematic representation of nucleus growth18
圖2-10 Schematic representation of the three crystal growth modes18
圖2-11 Structural zone mode for coating growth as proposed by Thornton for sputtered coatings19
圖2-12 附著類型示意圖(a)簡單附著(b)擴散附著(c)通過中間層附著(d)通過宏觀效應附著19
圖2-13 薄膜受熱後因與底材之熱膨脹係數的差異,所呈現的現象26
圖2-14 四點量測示意圖27
圖3-1 實驗流程圖30
圖3-2 UDP450系統示意圖33
圖3-3 α-STEP量測示意圖33
圖3-4 四點探針示意圖35
圖3-5 附著力測試機35
圖4-1 基板偏壓-60V下沉積20分鐘後的橫截面之SEM圖38
圖4-2 基板偏壓分別為-40V至-120V之X光繞射圖38
圖4-3 不同基板偏壓下的平面間距─偏壓曲線圖40
圖4-4 不同基板偏壓下的殘餘應力曲線圖40
圖4-5 不同偏壓下之半高寬曲線圖42
圖4-6 不同基板偏壓下之片電阻曲線圖42
圖4-7 (a)不同氧流量下之抗拉強度曲線圖(b)單位時間內不同滲氧流量之膜厚曲線圖(c)不同氧流量下OES強度曲線圖44
圖4-8 分別在氧流量(a)0、(b)1、(c)2、(d)3、(e)4、(f)5、(g)6、(h)8、(i)10sccm下的AES縱深輪廓分布圖50
圖4-9 介面反應區內Cr、Cr2O3成分比例與氧流量變化關係52
圖4-10 不同氧流量下Cr / Cr2O3的比值變化52
圖4-11 分別在氧流量(a)0、(b)1、(c)2、(d)3、(e)4、(f)5、(g)6、(h)8、(i)10sccm下的Cr 2p3/2 XPS光譜圖55
圖4-12 (a)未滲氧之SEM破裂面顯微觀察(b)破裂面之EDS成分分析圖(c)未滲氧之AES表面元素分析圖56
圖4-13 (a)氧流量3sccm之破裂面SEM觀察圖(b)氧流量3sccm破裂面之EDS成分分析圖(c)氧流量3sccm破裂面B區之EDS成分分析圖(d)氧流量3sccm破裂面A區之EDS成分分析圖58
圖4-14 (a)氧流量3sccm破裂面B區之XPS光譜圖(b)氧流量3sccm破裂面A區之XPS光譜圖59
圖4-15 (a)氧流量4sccm破裂面SEM觀察圖(b)破裂面之EDS成分分析圖(c)A、C區之EDS成分分析圖(d)B區之EDS成分分析圖60
圖4-16 (a)氧流量4sccm破裂面A區之XPS光譜圖(b)氧流量4sccm破裂面B區之XPS光譜圖61
圖4-17 (a)Cr之XPS鍵結能標準位置(b)Cr2O3之XPS鍵結能標準位置62
圖4-18 氧流量4sccm時Cr 2p3/2之、2p1/2XPS光譜圖62
圖4-19 (a)氧流量6sccm破裂面之SEM圖(b)氧流量6sccm之EDS圖(c)A區之EDS成分分析圖(d)B區之EDS成分分析圖64
圖4-20 (a)氧流量6sccm破裂面B區之AES表面成分分析圖(b)氧流量6sccm破
裂面A區之XPS光譜圖65
圖4-21 (a)未滲氧之AFM圖(b)氧流量6sccm之AFM圖66
圖4-22 (a)氧流量8sccm破裂面之SEM圖(b)氧流量8sccm破裂面之EDS成分分析圖(c)B區之EDS成分分析圖(d)A區之EDS成分分析圖67
圖4-23 氧流量8sccm破裂面B區之AES表面分析圖69
圖4-24 (a)氧流量10sccm破裂面之SEM圖(b)氧流量10sccm破裂面之EDS成分分析圖(c)B區之EDS成分分析圖(d)A區之EDS成分分析圖70
圖4-25 (a)氧流量10sccm破裂面之XPS光譜圖(b)氧流量10sccm Cr之XPS能譜圖71
圖4-26 氧流量10sccm破裂面之AES成分分析圖72
圖4-27 介面破壞分布圖72
圖4-28 不同鋁薄膜厚度下之抗拉強度曲線圖74
圖4-29 於SEM下觀察的Bonding74
圖4-30 拉力破壞位置分布圖75
圖4-31 鋁薄膜不同厚度下之硬度分布圖75
表 目 錄
表4-1 不同氧流量下之抗拉強度與氧化物厚度50
1. 姚寶順,氧化銦錫薄膜之電磁屏蔽效能和其機械性質之研究,88年成大材料系碩士
2. R. A. Week, “Thin-Film Shielding for Microcircuit Applications and a Useful Laboratory Tool for Plane-Wave Shielding Evaluations”, IEEE Trans. EMC, 10 (1) p105-112. (1968)
3. H. A. Lasitter “Low-Frequency Shield Effectiveness of Conductive Glass”, IEEE Trans. EMC, 6 (l) p17-30. (1964)
4. K. L. Chopra, “Growth of Thin Metal Films under Applied Electric Field”, Appl. Phys. Lett., 7(5) p140-142. (1965)
5. D. 1. Kennedy, R. E. Hayes and R. W. Aisford, “The Influence of Charge Effects on the Growth and Electrical Resistivity of Thin Metal Films”, J. Appl. Phys., 38 . p1986-1987. (1967)
6. E. Ahilea and A. A. Hirsch, “Resistance of Thin Metal Films Grown under a Longitudinal Electric Field”, J. Appl. Phys., 42(13) p5601-5608. (1971)
7. K. L. Chopra, S. Major and D. K. Pandya, “Transparent Conductors-a Status Review”, Thin Solid Films", 102 p1-46. (1983)
8. R. Tueta and M. Braguier, “Fabrication and Characterization of Indium Tin Oxide Thin Films for Electroluminescent Applications”,Thin solid Films, 80 p143-148. (1981)
9. F. L. Bouquet and C. R. Maag, “Ground Radiation Tests and Flight Atomic Oxygen Tests of ITO Protective Coatings for Galileo Spacecraft”, IEEE Trans. Nucl. Sci, NS-33, 6.p1408-1412. (1986)
10. C. M. Lamport, “Heat Mirror Coatings for Energy Conserving Windows”, Solar Energy Mater., 6(1) .p1-41. (1981)
11. J. R. Stevens et al., “Electrochromism of W03-Based Films in Contact with a Solid Li-Doped Siloxane Elastomer Electrolyte”, Applied Optics, 26(17) p3489-3490. (1987)
12. S. M. Rossnagel et al.,”Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1989.
13. Brian Chapman, “Glow Discharge Processes”, John Wiley and Sons, New York, 1980.
14. R. F. Bunshah et al., “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1982.
15. J. A. Thomton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci. TechnoL, 11(4) p666-670. (1974)
16. D.M.Mattox, “ Thin Film Metallization of Oxides in Microelectronics ” Thin Solid Films,18 , p173 ,(1973)
17. W. C. O. Mara,”Liquid Crystal Flat Planel Display:Manufacturing Science & Technology”,Van Nostrand Reinhold,1993.
18. C. H. F. Peden, K. B. Kidd ,and N. D.Shinn,”Metal/metal-oxide interfaces:A surface science approach to the study of adhesion ”,J.Vac.Sci.&Tech.,A9(3)p1518(1991)
19. Y. H. Kim,Y. S. Chaug ,and J. Kim ,”Adhesion of titanium thin film to oxide substrates ”,J.Vac.Sci.&ech.,A5,(5) p2890(1987)
20. H. Nagata and T. Shinriki,”Improvement of bonding strength between Au/Ti and SiO2 films by Si layer insertion ”,J.Vac.Sci.&Tech.,A17,(3), p1018(1999)
21. J. M. Rigsbee, P. A. Scott, and C. P. Ju,”Ion-plated metal/cermic interfaces ”,Vacuum,36,p71(1986)
22. R. C. Budhani, S. Prakash, H. J. Doerr,and R. F. Bunshah ,”Summary Abstract:Oxygen enhanced adhesion of platinum films deposited on thermally grown alumina surfaces ”,J.Vac.Sci&Tech.,A4(6) ,p3023, (1986)
23. R. A. Erck, A. Erdemir and G. R. Fenske,”Effect of film adhrsion on tribological properties of silver-coated alumina ”,Surface and Coatings Technology, 43/44, p577, (1990)
24. S. V. Pepper,”Effect of interfacial species on shear strength of metal-sapphire contacts ”,J.Appl.Phys.50,p8062, (1979)
25. W. Turner and G. Lin,”Flat Panel Display Packaging”,Proceedings of 45th Elwctronics Components and Technology Conference,1995, p.177
26. 莊達人,”VLSI製造技術”,高立圖書有限公司,(2000)P147
27. 楊志豪,”以非平衡磁控法濺鍍CrN鍍層性質之研究”,87年成大材料系碩士
28. J. L. Vossen and W. Ken,”Thin Film Process,Part Ⅱ”, Academic Press,1978
29. 劉文岳,”射頻磁控賤鍍氧化鋅薄膜之電性與光學特性研究”,89年成大材料系碩士
30. 張榮芳,”RF反應磁控濺射制備透明導電ZnO:Al薄膜之研究 ”,86年成大材料系碩士
31. 楊錦章,”基礎濺鍍電漿”,電子發展月刊,68期(72),13-40
32. A.Grill,”Cold Plasma in Material Fabrication”,chap2,(1993)
33. 莊達人,”VLSI製造技術,高立圖書有限公司 ”,(2000),p567
34. J. G. Ryan and S.Robers,”The Prepation and Characterization of TitaniumBoride Films”,Thin Solid Films,153,329,(1987)
35. B. Window and N. Savvides, “ Charged particle fluxes from planar magnetron sputtering sources ” ,J.Vac.Sci.Technol. ,A4(2),p196, (1986)
36. 陳瑜堯、吳政道,”金屬熱處理”,44 ,p41-47, (1995)
37. T. Hurkmans, F. Hauzer, B. Buil, K. Engel and R. Tietema , ” A new large volume PVD coating system using advanced controlled arc and combined arc/unbalanced magnetron (ABSTM) deposition techniques “ ,Surface and Coating Technology ,92, p62-68, (1997)
38. K. Wasa,”Handbook of Sputter Deposition Technology”,p71, ,(1992)
39. F. Shinoki and A. Itoh , “Mechanism of RF reactive sputtering “, J.Appl.Phy.,46(8),p3381-3384,(1975)
40. M. Harsdorff, ” The influence of charge point defects and contamination of substrate surfaces on nucleation “ ,Thin Solid Films,116,p55-74,(1984)
41. 田民波、劉德令編譯,”薄膜科學與技術手冊(上冊)“,機械出版社,P14
42. Venables,”Nucleation and Growth of Thin Films”,Rep.Prog.Phys.,47,p399-459, (1984)
43. J. A. Thornton,” Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings”,J.Vac.Sci.Technol.,12(4), p830, ,(1975)
44. 曲喜新、過璧君,”薄膜物理”,電子工業出版社,Chap2
45. D. L. Smith,”Thin-Film Deposition Principles & Practice”,McGraw-Hill,Inc., 1995
46. B. D. Cullity,”Elements of X-ray Diffraction”,p447-478
47. R. Lohmann, E. Osterschulze, K. Thoma and H. Gartner, ”Analysis of R.F.-sputtered TiB2 Hard Coatings by Means of X-ray Diffractometry and Auger Electron Spectroscopy” ,Materials Science and Engineering A,139,p259-263,(1991)
48. L. Miaogen, H. Jack, Judy and M. John, “Effects of RF bias on the texture, magnetics, and recording properties of RF sputtered CoCr/Cr longitudinal thin film media “,IEEE Transactions on magnetics, v26,n5,p1581-1583,(1990)
49. T.Odohira, T.Wada, R.Ebara and T.Kobayashi, “ Cavitation-erosion resistance of ion plated Cr-TiN multilayer coating ”, Surface and Coating Technology, v33, p301-308, (1987)
50. P.Andersen, M.Moske, K.Dyrbye and J.Bottiger,” Stress Formation and Relaxation in Amorphous Ta-Cr Films ”, Thin Solid Flim,v340, p205-209, (1999)
51. H.Oettel and R.Wiedemann, “Residual Stress in PVD Hard Coatings “, Surface and Coating Technology,v76-77, p265-273, (1995)
52. D.Rats, V.Hajek and L.Martinu, “ Micro-Scratch Analysis and Mechanical Properties of Plasma-Deposited Silicon-Based Coatings on Polymer Substrates “, Thin Solid Flim, v340, p33-39, (1999)
53. C.T.Wu, “Intrisic Stress of Magnetron-Sputtered Niobium Films”, Thin Solid Flim, v340, p205-209, (1999)
54. C.A.Davis,” A simple model for the formation of compressive stress in thin films by ion bombardment ” Thin Solid Flim, v226, p30 , (1993)
55. C.C.Chang, J.H.Chang and S.K.Fang, “ The Study of the Influence of Sputtering Parameters and Substrates to ZnO Thin Film Structure ”, Chinese Journal of Materials Science, v26, n1, p59-63, (1994)
56. S. J. Cho, S. Member, K. W. Paik and Y. G. Kim, “ The Effect of the Oxidation of Cu-Base Leadframe on the Interface Adhesion Between Cu Metal and Epoxy Molding Compound ”, IEEE Transactions Components and Manufacturing Technology-Part B , V20, N 2, (1997)
57. C. Palacio, H. J. Mathieu, “ Application of Factor Analysis to the AES and XPS Study of the Oxidation of Chromium ”, Surface and Interface Analysis:SIA, V16, p178-182, (1990)
58. R. Hill and R. Abbaschian, “ Physical Metallurgy Principles ”, An international Thomson Publishing Company, (1992)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top