跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建富
研究生(外文):Jian-Fu Huang
論文名稱:異位表現OsMADS34及OsCP7基因導致水稻穗生長異常之探討
論文名稱(外文):Rice gene functional analysis of panicle aberrant development in ectopically overexpressed OsMADS34 and OsCP7
指導教授:陳良築
指導教授(外文):Liang-Jwu Chen
口試委員:余淑美王國祥
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:水稻早開花半胱胺酸蛋白酶早開花節間縮短種子黑斑
外文關鍵詞:riceT-DNAoverexpressionMADS-boxcysteine proteaseinternode
相關次數:
  • 被引用被引用:2
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗材料來自Taiwan Rice Insertional Mutants library (TRIM library)中的T-DNA突變株M52048。M52048活化水稻第三號染色體上的OsMADS14、OsMADS34和OsCP7基因,造成矮株、早開花、節彎曲和穗無法完全抽出之特異性狀。OsMADS14和OsMADS34皆屬於MADS-box基因家族轉錄因子,可調控水稻開花機制及花器生長發育,OsMADS14在光週期調控下,可促使水稻開花,其機制已被釐清;OsMADS34可調控花器分生組織的型態、穗及穎花外桴的發育;OsCP7為putative cysteine protease,在水稻扮演的功能角色仍未明朗。利用大量表現OsMADS34和OsCP7的方式研究其基因功能。
  Ubi:OsMADS34有早開花和穗無法完全抽出等性狀,穗無法完全抽出主要為節間縮短所致,雖然第三節間較長仍無法彌補第一節間過短所造成的影響,過去認為水稻在乾旱逆境下會有穗無法完全抽出之性狀,透過Microarray和miRNA mocroarray分析得知OsMADS34的確可調控幾個與乾旱相關的基因和miRNA,因此假設OsMADS34可能參與水稻體內賀爾蒙調節和逆境相關反應。實驗利用賀爾蒙處理來改善Ubi:OsMADS34穗無法完全抽出之性狀,但結果卻不如預期,進一步分析GA處理的確有促進節間的延長,但主要為促進第二節間和第五節間延長,並沒有延伸第一節間的長度,因此沒有改善穗抽出之性狀。透過分析第一節間的GA代謝相關基因和細胞壁重建相關酵素基因的表現,發現Ubi:OsMADS34大量提升EATB基因的表現,可抑制多數GA生合成基因的表現,同時也減少OsXTH19和OsXTH28的表現,造成節間延長被抑制的現象,然而大量表現OsMADS34導致節間縮短的機制仍需更進一步的研究。
  OsCP7擁有典型的cysteine protease結構,signal peptide、prodomain和protease domain,為一主要表現在水稻幼苗及葉片的基因,但不表現於穎花中,利用CaMV 35S啟動子大量表現OsCP7卻無法成功得到穩定轉殖株,僅有的兩株轉殖株在移出培養基後便迅速死亡,加上實驗室前人亦無法利用玉米Ubiquitin啟動子大量表現OsCP7於水稻,推測過度表現其基因皆會造成水稻死亡;而以OsCP7上游1.6 Kb當作啟動子,構築OsCP7:OsCP7轉殖株,OsCP7在轉殖株各時期組織中均被大量表現,包含穗的部分,造成的性狀有矮株、略晚抽穗和種子黑斑且不稔實等。根據2011年二期作分析,證明此性狀與OsCP7:OsCP7構築是完全相關,大量表現OsCP7影響花粉的發育,造成穎花的穎片於抽穗後開始發生黑斑,且曝露於陽光面的穎片較早產生斑狀,接著影響種子糊熟的過程,累積大量的ROS造成大面積細胞死亡現象,致使轉殖株種子稔實率極低,稔實的種子重量也較輕,而經過確認有Knockdown OsCP7基因的35S:OsCP7 RNAi轉殖株並沒有特殊性狀,推測可能為水稻中有互補功能的基因存在。

M52048 is a rice mutant with T-DNA insertion which activated flanking genes OsMADS14, OsMADS34 and OsCP7, resulting in darwf, early flowering, node bending and impaired panicle exertion. OsMADS14 and OsMADS34 belong to MADS-box gene family, can regulate the flowering time and the floral meristem development. OsMADS14 regulate the flowering time and has been well studies. OsMADS34 has been known to regulate the floral meristem development and panicle branching, OsCP7 encodes a putative cysteine protease, but the function by overexpressing OsMADS34 and OsCP7 genes remained unknown.
The OsMADS34 overexpressing transgenic rice, Ubi:OsMADS34, revealed early flowering and impaired in panicle exertion. Morphological dissection indicated that the impaired panicle exertion was caused by shortening the first and second internodes. Previous study showed drought stress inhibited panicle exertion by reducing the peduncle elongation during flowering and induced the accumulation of ABA. The present study showed some dorught-related genes and miRNAs were regulated in Ubi:OsMADS34, and therefore, hypothesized that the phenotype of Ubi:OsMADS34 may regulated by drought stress or plant hormones. However, ABA inhibitor and GA treatments in this study could not improve the first internode elongation and panicle exertion. Gene expressinon analysis indicated the GA-regulated gene, EATB, was up-regulated and cell elongation promoting genes, XTH19 and XTH28, were reduced in the first and second internodes of Ubi:OsMADS34, suggesting that the limited internode elongation may be due to the differential expression of these internode regulating genes. However, how these genes were regulated remains further elucidation.
OsCP7, like a typical cysteine protease, consist of a signal peptide, a prodomain and a protease domain, expressed in vegetative tissues but not in reproductive tissues. No OsCP7 overexpressing transgenic rice driven by ubiquitin or 35S promoters was stably obtained, though few of them could survive in the medium. Instead of these consititutive promoters, a 1.6 kb promoter fragment of OsCP7 could drive the expression of OsCP7 in rice successfully. This 1.6 kb OsCP7 promoter-driven transgenic rice, OsCP7:OsCP7, showed slightly dawrf, delayed flowering, low pollen viabillity, lower fertility seeds, and lesion-like brown spots appeared on spikelet. The lesion-like spots were first occuerd on the outer surface of spikelet when exposed to sunlight after heading. The spots could spread quickly in days and led to extensive cell death with ROS accumulation. However, using RNAi approach to knockdown the expression of OsCP7 did not show any specific phenotype. Further investigation to understand the molecular mechanism of the formation of the lesion-like spot is underway.

中文摘要 i
英文摘要 ii
目錄 iv
圖表目錄 vi
縮字對照表 viii

前言 1
前人研究
一、 水稻基因突變庫及基因功能探討 2
二、 MADS-box基因家族 2
三、 MADS-box基因之ABCDE模式 3
四、 MADS-box基因之E群基因研究 3
五、 MADS-box基因與植物賀爾蒙之關係 4
六、 水稻節間的延長 4
七、 Cysteine protease之分類 5
八、 Papain-like cysteine proteases (PLCP) 6
九、 Legumains and metacaspases 6
十、 Cysteine protease參與植物的計畫性細胞凋亡 (Programmed cell death, PCD) 7
材料方法
一、 儀器及設備 8
二、 實驗藥品 8
三、 T-DNA插入水稻突變株之栽種 8
四、 水稻轉殖株之構築 8
五、 水稻轉殖基因分析 10
六、 水稻花粉分析 13
七、 水稻組織染色分析 13
八、 水稻轉殖株之植物賀爾蒙處理 14
結果
壹、水稻OsMADS34之基因研究
一、 Ubi:MADS34之田間外表性狀觀察 16
二、 TNG67與Ubi:MADS34之節間延長分析 16
三、 TNG67與Ubi:MADS34之賀爾蒙處理試驗 17
四、 Ubi:MADS34之與節間延長相關基因表現分析 18
五、 Ubi:MADS34之Microarray分析 19
貳、水稻OsCP7之基因研究
一、 OsCP7基因序列分析 19
二、 35S:OsCP7構築及分析 20
三、 35S:OsCP7-6xHis tag構築及分析 21
四、 OsCP7:OsCP7轉殖株之分析 22
五、 35S:OsCP7和OsCP7:OsCP7 之OsCP7表現比較分析 24
六、 35S:OsCP7 RNAi之分析 25
討論
一、 大量表現OsMADS34提早水稻開花 26
二、 大量表現OsMADS34影響節間生長 26
三、 OsMADS34與乾旱逆境和植物賀爾蒙之關係 27
四、 大量表現OsMADS34影響GA代謝基因的調控 28
五、 大量表現OsMADS34減少細胞延長的相關酵素表現 29
六、 OsCP7為一PLCP 29
七、 過度表現OsCP7造成水稻死亡 30
八、 缺失部分的C1A peptidase domain造成OsCP7缺失功能 31
九、 異位表現OsCP7造成水稻穎花有類似計畫性細胞死亡情形 31
十、 水稻含有OsCP7的互補基因 32
結論 33
參考文獻 34
表 43
圖 44
附表 79
附圖 82


王俊達. (2013). 異位大量表現OsMADS45轉殖株之分子調控與農藝性狀. 中興大學生命科學研究所博士論文, 86.
李咨胤. (2010). 水稻T-DNA插入突變體M52048分析及其活化的三個基因OsMADS14, OsMADS34及OsCP7之功能研究. 中興大學分子生物學研究所碩士論文, 86.
陳柏儒. (2008). 利用 T-DNA 插入突變體探討水稻基因之功能 – 穀粒發育異常突變體 M0039314 之功能分析. 中興大學分子生物研究所碩士論文.
楊琇淳. (2009). 水稻半胱胺酸蛋白酶功能之研究. 台灣大學農藝學研究所碩士論文, 86.
羅舜芳. (2008). 利用T-DNA插入性突變株探討水稻中GA 2-oxidase, MADS14, MADS34和Flavonoid 3''-hydroxylase之功能. 中興大學分子生物學研究所博士論文, 166.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.
Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. U. S. A. 97, 5328-5333.
Arora, R., Agarwal, P., Ray, S., Singh, A.K., Singh, V.P., Tyagi, A.K., and Kapoor, S. (2007). MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8, 242.
Canut, H., Dupre, M., Carrasco, A., and Boudet, A.M. (1987). Proteases of Melilotus alba mesophyll protoplasts. Planta 170, 541-549.
Chhun, T., Aya, K., Asano, K., Yamamoto, E., Morinaka, Y., Watanabe, M., Kitano, H., Ashikari, M., Matsuoka, M., and Ueguchi-Tanaka, M. (2007). Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19, 3876-3888.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G., and Jang, S.K. (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40, 419-429.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
Cosgrove, D.J. (1997). Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9, 1031-1041.
Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G., and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J. 61, 767-781.
Dai, M., Zhao, Y., Ma, Q., Hu, Y., Hedden, P., Zhang, Q., and Zhou, D.X. (2007). The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol. 144, 121-133.
Desikan, R., Reynolds, A., Hancock, J.T., and Neill, S.J. (1998). Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem. J. 330 ( Pt 1), 115-120.
Dreni, L., Jacchia, S., Fornara, F., Fornari, M., Ouwerkerk, P.B., An, G., Colombo, L., and Kater, M.M. (2007). The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J. 52, 690-699.
Duan, K., Li, L., Hu, P., Xu, S.P., Xu, Z.H., and Xue, H.W. (2006). A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant J. 47, 519-531.
Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751-763.
Earnshaw, W.C. (1995). Nuclear changes in apoptosis. Curr. Opin. Cell Biol. 7, 337-343.
Fincher, G.B. (1989). Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Biol. 40, 305-346.
Fukao, T., and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. U. S. A. 105, 16814-16819.
Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol. 153, 728-740.
Gillmor, S.A., Craik, C.S., and Fletterick, R.J. (1997). Structural determinants of specificity in the cysteine protease cruzain. Protein Sci. 6, 1603-1611.
Greenberg, J.T. (1996). Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. U. S. A. 93, 12094-12097.
Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. (1994). Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77, 551-563.
Groves, M.R., Taylor, M.A., Scott, M., Cummings, N.J., Pickersgill, R.W., and Jenkins, J.A. (1996). The prosequence of procaricain forms an alpha-helical domain that prevents access to the substrate-binding cleft. Structure 4, 1193-1203.
Gupta, P., Raghuvanshi, S., and K TYAGI, A. (2001). Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol. 18, 275-282.
Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030.
Hedden, P., and Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5, 523-530.
Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol. 63, 351-364.
Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., Kitano, H., Matsuoka, M., and Kobayashi, M. (2001). Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc. Natl. Acad. Sci. U. S. A. 98, 8909-8914.
Iwamoto, M., Baba-Kasai, A., Kiyota, S., Hara, N., and Takano, M. (2010). ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ 33, 805-815.
Iwamoto, M., Kiyota, S., Hanada, A., Yamaguchi, S., and Takano, M. (2011). The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiol. 157, 1187-1195.
Jabs, T., Dietrich, R.A., and Dangl, J.L. (1996). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853-1856.
Jack, T. (2001). Plant development going MADS. Plant Mol. Biol. 46, 515-520.
Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Lee, S., Yang, K., Nam, J., An, K., Han, M.J., Sung, R.J., Choi, H.S., Yu, J.H., Choi, J.H., Cho, S.Y., Cha, S.S., Kim, S.I., and An, G. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570.
Kaufmann, K., Muino, J.M., Jauregui, R., Airoldi, C.A., Smaczniak, C., Krajewski, P., and Angenent, G.C. (2009). Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 7, e1000090.
Khanday, I., Yadav, S.R., and Vijayraghavan, U. (2013). Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. Plant Physiol. 161, 1970-1983.
Kinoshita, T., Yamada, K., Hiraiwa, N., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (1999). Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J. 19, 43-53.
Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H., and Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol. 51, 47-57.
Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. (2012). Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24, 1848-1859.
Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747.
Lamb, C., and Dixon, R.A. (1997). The Oxidative Burst in Plant Disease Resistance. Annu Rev Plant Physiol Plant Mol Biol 48, 251-275.
Lee, S., Choi, S.C., and An, G. (2008). Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J. 54, 93-105.
Lee, S., Jung, K.H., An, G., and Chung, Y.Y. (2004). Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol. Biol. 54, 755-765.
Leist, M., and Jaattela, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2, 589-598.
Li, J., Jiang, J., Qian, Q., Xu, Y., Zhang, C., Xiao, J., Du, C., Luo, W., Zou, G., Chen, M., Huang, Y., Feng, Y., Cheng, Z., Yuan, M., and Chong, K. (2011). Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23, 628-640.
Lim, J., Moon, Y.H., An, G., and Jang, S.K. (2000). Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 44, 513-527.
Lohman, K.N., Gan, S., John, M.C., and Amasino, R.M. (1994). Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 92, 322-328.
Magome, H., Nomura, T., Hanada, A., Takeda-Kamiya, N., Ohnishi, T., Shinma, Y., Katsumata, T., Kawaide, H., Kamiya, Y., and Yamaguchi, S. (2013). CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc. Natl. Acad. Sci. U. S. A. 110, 1947-1952.
Martinez, D.E., Bartoli, C.G., Grbic, V., and Guiamet, J.J. (2007). Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. J Exp Bot 58, 1099-1107.
Martinez, M., Cambra, I., Gonzalez-Melendi, P., Santamaria, M.E., and Diaz, I. (2012). C1A cysteine-proteases and their inhibitors in plants. Physiol Plant 145, 85-94.
Metraux, J.P., and Kende, H. (1983). The role of ethylene in the growth response of submerged deep water rice. Plant Physiol. 72, 441-446.
Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H., and Nagato, Y. (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130, 705-718.
Olszewski, N., Sun, T.P., and Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 Suppl, S61-80.
Otegui, M.S., Noh, Y.S., Martinez, D.E., Vila Petroff, M.G., Staehelin, L.A., Amasino, R.M., and Guiamet, J.J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J. 41, 831-844.
Paris, N., Stanley, C.M., Jones, R.L., and Rogers, J.C. (1996). Plant cells contain two functionally distinct vacuolar compartments. Cell 85, 563-572.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203.
Peterson, L.W., and Huffaker, R.C. (1975). Loss of Ribulose 1,5-Diphosphate Carboxylase and Increase in Proteolytic Activity during Senescence of Detached Primary Barley Leaves. Plant Physiol. 55, 1009-1015.
Qi, W., Sun, F., Wang, Q., Chen, M., Huang, Y., Feng, Y.Q., Luo, X., and Yang, J. (2011). Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol. 157, 216-228.
Raskin, I., and Kende, H. (1984). Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol. 76, 947-950.
Rawlings, N.D., Barrett, A.J., and Bateman, A. (2010). MEROPS: the peptidase database. Nucleic Acids Res 38, D227-233.
Richau, K.H., Kaschani, F., Verdoes, M., Pansuriya, T.C., Niessen, S., Stuber, K., Colby, T., Overkleeft, H.S., Bogyo, M., and Van der Hoorn, R.A. (2012). Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol. 158, 1583-1599.
Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.H., An, G., Kitano, H., Ashikari, M., and Matsuoka, M. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896-1898.
Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., and Matsuoka, M. (2002). Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701-702.
Senatore, A., Trobacher, C.P., and Greenwood, J.S. (2009). Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol. 149, 775-790.
Sequencing Project, I.R.G. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Swanson, S.J., Bethke, P.C., and Jones, R.L. (1998). Barley aleurone cells contain two types of vacuoles. Characterization Of lytic organelles by use of fluorescent probes. Plant Cell 10, 685-698.
Takeda, K. (1977). Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp. 16, 18.
Tapia-Lopez, R., Garcia-Ponce, B., Dubrovsky, J.G., Garay-Arroyo, A., Perez-Ruiz, R.V., Kim, S.H., Acevedo, F., Pelaz, S., and Alvarez-Buylla, E.R. (2008). An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol. 146, 1182-1192.
Theissen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75-85.
Theissen, G., and Melzer, R. (2007). Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100, 603-619.
Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693-698.
van der Hoorn, R.A. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59, 191-223.
van der Hoorn, R.A., Leeuwenburgh, M.A., Bogyo, M., Joosten, M.H., and Peck, S.C. (2004). Activity profiling of papain-like cysteine proteases in plants. Plant Physiol. 135, 1170-1178.
Vernet, T., Khouri, H.E., Laflamme, P., Tessier, D.C., Musil, R., Gour-Salin, B.J., Storer, A.C., and Thomas, D.Y. (1991). Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J. Biol. Chem. 266, 21451-21457.
West, A.G., Shore, P., and Sharrocks, A.D. (1997). DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending. Mol. Cell. Biol. 17, 2876-2887.
Willige, B.C., Ghosh, S., Nill, C., Zourelidou, M., Dohmann, E.M., Maier, A., and Schwechheimer, C. (2007). The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19, 1209-1220.
Yamaguchi, T., and Hirano, H.Y. (2006). Function and diversification of MADS-box genes in rice. ScientificWorldJournal 6, 1923-1932.
Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., and Hirano, H.Y. (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16, 500-509.
Yamaguchi, T., Lee, D.Y., Miyao, A., Hirochika, H., An, G., and Hirano, H.Y. (2006). Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18, 15-28.
Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591-1606.
YANG, J.-C., Liu, K., ZHANG, S.-F., WANG, X.-M., WANG, Z.-Q., and LIU, L.-J. (2008a). Hormones in rice spikelets in responses to water stress during meiosis. Acta Agronomica Sinica 34, 111-118.
Yang, M., Qi, W., Sun, F., Zha, X., Chen, M., Huang, Y., Feng, Y.Q., Yang, J., and Luo, X. (2013). Overexpression of rice LRK1 restricts internode elongation by down-regulating OsKO2. Biotechnol Lett 35, 121-128.
Yang, X., Sun, C., Hu, Y., and Lin, Z. (2008b). Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J Biosci 33, 103-112.
Yang, X.C., and Hwa, C.M. (2008). Genetic modification of plant architecture and variety improvement in rice. Heredity (Edinb) 101, 396-404.
Yang, Y., Fanning, L., and Jack, T. (2003). The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J. 33, 47-59.
Yokoyama, R., Rose, J.K., and Nishitani, K. (2004). A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol. 134, 1088-1099.
Zhang, D.S., Liang, W.Q., Yuan, Z., Li, N., Shi, J., Wang, J., Liu, Y.M., Yu, W.J., and Zhang, D.B. (2008). Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1, 599-610.
Zhang, Y., Xiao, W., Luo, L., Pang, J., Rong, W., and He, C. (2012). Downregulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA insertion causes dwarfism and panicle enclosure in rice. Planta 235, 25-38.
Zheng, Y., Ren, N., Wang, H., Stromberg, A.J., and Perry, S.E. (2009). Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21, 2563-2577.
Zhou, H.L., He, S.J., Cao, Y.R., Chen, T., Du, B.X., Chu, C.C., Zhang, J.S., and Chen, S.Y. (2006). OsGLU1, a putative membrane-bound endo-1,4-beta-D-glucanase from rice, affects plant internode elongation. Plant Mol. Biol. 60, 137-151.
Zhu, Y., Nomura, T., Xu, Y., Zhang, Y., Peng, Y., Mao, B., Hanada, A., Zhou, H., Wang, R., Li, P., Zhu, X., Mander, L.N., Kamiya, Y., Yamaguchi, S., and He, Z. (2006). ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442-456.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top