跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:熊宏嘉
研究生(外文):Shiung, Hung-Jia
論文名稱:R-410A冷媒在狹窄雙套管中週期性流率或功率振盪之蒸發熱傳研究
論文名稱(外文):Time Periodic Evaporation Heat Transfer of Refrigerant R-410A due to Refrigerant Flow Rate Oscillation or Heat Flux Oscillation in a Narrow Annular Duct
指導教授:林清發林清發引用關係
指導教授(外文):Lin, Tsing-Fa
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:188
中文關鍵詞:R-410A冷媒流率振盪功率振盪蒸發熱傳
外文關鍵詞:Refrigerant R-410AFlow rate oscillationHeat flux oscillationEvaporation heat transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗方式探討R-410A新冷媒在水平狹窄雙套管中的蒸發熱傳和可看見的蒸發流動特性之實驗研究。流道之間隙固定在2.0mm。我們探討了冷媒質通量振盪、熱通量振盪、週期、振幅、飽和溫度、以及蒸氣乾度對熱傳遞係數及蒸發流動特性的影響。在實驗中,平均冷媒質通量從300到500 kg/m2s,振幅為10,20 和30%,平均熱通量從5到15 kW/m2,振幅為10,30 和50%,周期分別為20、60、120s,蒸氣乾度由0.05到0.95以及冷媒飽和溫度從10到15℃。
第一部份為施加R-410A冷媒流量振盪之蒸發熱傳研究。首先是穩態冷媒質通量與時間平均暫態冷媒質通量振盪之熱傳比較,由實驗數據可發現經過時間平均化後的冷媒質通量振盪蒸發熱傳幾乎與穩態蒸發熱傳一致。在暫態質通量振盪蒸發熱傳實驗時,當質通量振盪的振幅和週期提高,銅管壁溫的振盪振幅也會跟著提高。在實驗中,壁溫的振蕩會稍稍落後於質通量的振盪而有時間落後或稱時滯的現象產生。而我們也發現在中乾度時會開始在管道內產生週期性氣泡流及環形流譜的轉變。另外在前半週期中加熱壁溫會隨著冷媒質通量的遞減而降低,也就是會有蒸發熱傳增強的現象產生,我們將此現象歸因於在測試段入口強烈的質通量振盪導致蒸發流動的冷媒乾度及液膜厚度的改變所造成。
第二部份為施加銅管熱通量振蕩之蒸發熱傳研究。首先是穩態熱通量與時間平均暫態熱通量振盪之熱傳比較,由實驗數據可發現經過時間平均化後的熱通量振盪蒸發熱傳幾乎與穩態蒸發熱傳相似。加熱壁溫和蒸發熱傳流譜也會隨著和熱通量振盪同樣的頻率振盪。在暫態熱通量振盪蒸發熱傳實驗時,當熱通量振盪的振幅加大和週期加長,銅管壁溫的振盪振幅也會跟著增加。值得注意的是由內銅管之熱慣性而導致嚴重的時滯現象也在實驗中被發現。在中乾度時會開始在管道內產生週期性氣泡流及環形流譜的轉變。另外在前半週期中加熱壁溫會隨著熱通量的遞減而降低,且有蒸發熱傳降低的現象產生,我們將此現象歸因於強烈的熱通量振盪導致蒸發流動的冷媒乾度及液膜厚度的改變所造成。
最後,我們將R-410A質通量或熱通量振盪蒸發熱傳遞係數在所有影響參數中的實驗資料做分析,並求出經驗公式。

An experiment is carried out in the present study to investigate the characteristics of time periodic evaporation heat transfer for refrigerant R-410A flowing in a horizontal narrow annular duct subject to an imposed time periodic mass flux oscillation or heat flux oscillation. The mass flux oscillation and heat flux oscillation are both in the form of triangular waves. The gap of the duct is fixed at 2.0 mm. In the study, the effects of the refrigerant mass flux oscillation, heat flux oscillation, R-410A saturation temperature, imposed heat flux and vapor quality of the refrigerant on the temporal evaporating flow heat transfer and the photos of the evaporating flow will be examined in detail. The present experiment is conducted for the mean refrigerant mass flux varied from 300 to 500 kg/m2s, the amplitude of the mass flux oscillation is fixed at 10, 20 and 30% with the period of the mass flux oscillation tp fixed at 20, 60 and 120 seconds. Besides, the mean imposed heat flux is varied from 0 KW/ m2 to 15 KW/ m2, the amplitude of the heat flux oscillation is chosen to vary from 10% to 50% of the mean heat flux , and the period of the q oscillation tp is also fixed at 20, 60, 120 seconds. The mean refrigerant saturation temperature is set at 5, 10 and 15 ℃ for the mean refrigerant vapor quality varied from 0.05 to 0.95. The measured evaporation heat transfer data are expressed in terms of the variations of the heated wall temperature and evaporation heat transfer coefficient with time.
In the first part of the study the results for the R-410A evaporation subject to the mass flux oscillation are presented. The measured heat transfer data for the R-410A evaporating flow for a constant coolant mass flux are first compared with the time-average data for a time periodic mass flux oscillation. This comparison shows that the mass flux oscillation exerts negligible influences on the time-average evaporation heat transfer. Then, we present the data to elucidate the effects of the experimental parameters on the amplitude of Tw oscillation over wide ranges of the experimental parameters. The results indicate that the Tw oscillation is stronger for higher amplitude and a longer period of the mass flux oscillation. However, a small time lag in the Tw oscillation is also noted. Moreover, at the intermediate vapor quality changes in the evaporating flow patterns between that dominated by the nucleation bubbles and liquid film take place cyclically. Furthermore, after the time lag the heated pipe wall temperature decreases and the evaporation heat transfer gets better as the mass flux decreases in the first half of the periodic cycle. In the second half of the cycle in which the mass flux increases the opposite processes occur. These unusual changes of the heating surface temperature and heat transfer coefficient with the mass flux oscillation are attributed to the strong effects of the mass flux oscillation on the state of the refrigerant at the duct inlet and hence on the changes of the vapor quality and liquid film thickness in the evaporating flow.
In the second part of the study results for the R-410A evaporation subject to the heat flux oscillation are also presented. Effects of the mean level and oscillation amplitude and period of the heat flux on the time periodic R-410A evaporation heat transfer have been investigated in detail. We first note that the time-average heat transfer coefficients for the time periodic evaporation of R-410A are not affected to a noticeable degree by the amplitude and period of the imposed heat flux oscillation. Then, the heated pipe wall temperature and evaporating flow pattern also oscillate periodically in time and at the same frequency as the heat flux oscillation. Experiment also shows that the resulting oscillation amplitudes of the wall temperature get longer for a longer period and a larger amplitude of the imposed heat flux oscillation and for a higher mean imposed heat flux. A significant time lag in the heated surface temperature oscillation is also noted, which apparently results from the thermal inertia of the copper inner pipe. Moreover, at the intermediate vapor quality changes in the evaporating flow pattern between that dominated by the nucleation bubbles and liquid film take place cyclically. Furthermore, after the time lag the heated pipe wall temperature decreases and the evaporation heat transfer gets worse as the heat flux decreases in the first half of the periodic cycle. In the second half of the cycle in which the heat flux increases the opposite processes occur. These changes of the heating surface temperature and heat transfer coefficient with the heat flux oscillation are attributed to the strong effects of the heat flux oscillation and hence on the changes of the vapor quality and liquid film thickness in the evaporating flow.
The effects of heat flux oscillation at extremely short and long periods have been explored. Due to the existence of the thermal inertia of the heated copper duct, the resulting heated surface temperature does not oscillate with time at an extremely short period of the imposed heat flux oscillation. But the oscillation amplitude of the heated surface temperature gets noticeably stronger for an extremely long period of the imposed heat flux oscillation.

CONTENTS
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) iii
CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES x
NOMENCLATURE xxv
CHAPTER 1 INTRODUCTION 1
1.1 Motivation of the Present Study 1
1.2 Literature Review 2
1.2.1 Single-Phase Heat Transfer in Small Channels 3
1.2.2 Evaporation Heat Transfer in Conventional Channels 3
1.2.3 Evaporation Heat Transfer in Small Channels 5
1.2.4 Transient flow boiling heat transfer 6
1.3 Objective of the Present Study 8
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES 11
2.1 Refrigerant Flow Loop 11
2.2 Test Section 12
2.3 Water Loop for Preheater 13
2.4 Water-Glycol Loop 13
2.5 DC Power Supply 14
2.6 Photographic System 14
2.7 Data Acquisition 14
2.8 Experimental Procedures 15
2.9 Experimental Parameters 16
CHAPTER 3 DATA REDUCTION 25
3.1 Single Phase Heat Transfer 25
3.2 Two Phase Heat Transfer 27
3.3 Uncertainty Analysis 28
CHAPTER 4 TIME PERIODIC EVAPORATION OF R-410A IN NARROW ANNULAR DUCT DUE TO MASS FLUX OSCILLATION 31
4.1 Single-phase Heat Transfer 32
4.2 Stable and Time-Average Evaporation Heat Transfer Coefficients 33
4.3 Time Periodic Evaporation Heat Transfer Coefficients 34
4.4 Characteristics of Time Periodic R-410A Evaporating Flow 36
CHAPTER 5 TIME PERIODIC EVAPORATION OF R-410A IN NARROW ANNULAR DUCT DUE TO HEAT FLUX OSCILLATION 97
5.1 Stable and Time-average Evaporation Heat Transfer Coefficients 98
5.2 Time Periodic Evaporation Heat Transfer Characteristics 98
5.3 Effect of Heat Flux Oscillation at Extremely Short and Long Periods 100
5.4 Effect of Heat Flux Oscillation Amplitude 100
5.5 Characteristics of Time Periodic R-410A Evaporation Flow 101
CHAPTER 6 COMPARISON OF TIME PERIODIC EVAPORATION OF REFRIGERANTS R-410A AND R-134a 163
6.1 Comparison of Evaporation Heat Transfer in R-410A and R-134a due to Refrigerant Flow Rate Oscillation 163
6.2 Comparison of Evaporation Heat Transfer in R-410A and R-134a due to Heat FluxOscillation 163
CHAPTER 7 COMCLUDING REMARKS 183

REFERENCES 185

REFERENCES
1. Alberto Cavallini, Working fluids for mechanical refrigeration- Invited paper presented at the 19th International Congress of Refrigeration, The Hague, Int. J. Refrig. 19 (1996) 485-496.
2. S. Devotta, A.V. Waghmare, N.N. Sawant, B.M. Domkundwar, Alternatives to HCFC-22 for air conditioners, Applied Thermal Engineering 21 (2001) 703-715.
3. S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Experimental Thermal and Fluid Science 26 (2002) 389-407.
4. S.G. Kandlikar, and W.J. Grande, Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology, Heat Transfer Engineering 24 (1) (2003) 3-17.
5. P.A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied Thermal Engineering 17 (1997) 705-715.
6. X. F. Peng, B. X. Wang, G. P. Peterson and H. B. Ma, Experimental investigation of heat transfer in flat plates with rectangular microchannels, Int. J. heat Mass Transfer 38 (1) (1995) 127-137
7. X. F. Peng and G. P. Peterson, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transfer 39 (12) (1996) 2599-2608.
8. B. Agostini, B. Watel, A. Bontemps and B. Thonon, Friction factor and heat transfer coefficient of R134a liquid flow in mini-channels, Applied Thermal Engineering 22 (16) (2002) 1821-1834.
9. V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16 (2) (1976) 359-368.
10. F. W. Dittus, L. M. K. Boelter, Heat transfer in automobile radiator of the tube type, Publication in Engineering, University of California, Berkley, (2) (1930) 250.
11. B. Watel, Review of saturated flow boiling in small passages of compact heat-exchangers, International Journal of Thermal sciences 42 (2) (2003) 107-140.
12. G.. M. Lazarek and S. H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, Int. J. Heat Mass Transfer 25 (1982) 945-960.
13. C.C. Wang and C.S. Chiang, Two-phase heat transfer characteristics for R-22/R-407C in a 6.5-mm smooth tube, Int. J. Heat and Fluid Flow 18 (1997) 550-558.
14. J. P. Hartnett and W. J. Minkowycz, Two-phase evaporative heat transfer coefficients of refrigerant HFC-134a under forced flow conditions in a small horizontal tube, Int. Comm. Heat Mass Transfer 27 (2000) 35-48.
15. T. Y. Choi, Y. J. Kim, M. S. Kim, S. T. Ro, Evaporation heat transfer of R-32, R-134a, R-32/134a, and R-32/125/134a inside a horizontal smooth tube, International Journal of Heat and Mass Transfer 43 (2000) 3651-3660.
16. M. H. Yu, T. K. Lin, C. C. Tseng, Heat transfer and flow pattern during two-phase flow boiling of R-134a in horizontal smooth and microfin tubes, International Journal of Refrigeration 25 (2002) 789-798.
17. H.S. Lee, J. I. Yoon, J. D. Kim, P. K. Bansal, Characteristics of condensing and evaporating heat transfer using hydrocarbon refrigerants, Applied Thermal Engineering 26 (2006) 1054-1062.
18. S. Wongwises and M. Polsongkram, Evaporation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger, International Journal of Heat and Mass Transfer 49 (2006) 658-670.
19. C. Y. Park and P. S. Hrnjak, CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube, International Journal of Refrigeration 30 (2007) 166-178.
20. M. A. Akhavan-Behabadi, R. Kumar, S. G. Mohseni, Condensation heat transfer of R-134a inside a microfin tube with different tube inclinations, International Journal of Heat and Mass Transfer 50 (2007) 4864-4871.
21. Y. Y. Yan and T. F. Lin, Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe, International Journal of Heat and Mass Transfer 41 (1998) 4183-4194.
22. Y. Y. Yan and T. F. Lin, Reply to Prof. R.L. Webb’s and Dr. J.W. Paek’s comments, International Journal of Heat Transfer 46 (6) (2003) 1111-1113.
23. R. Yun, Y. C. Kim, M. S. Kim, Convective boiling heat transfer characteristics of CO2 in microchannels, International Journal of Heat and Mass Transfer 48 (2005) 235-242.
24. Y. M. Lie, F. Q. Su, R. L. Lai, T. F. Lin, Experimental study of evaporation heat transfer characteristics of refrigerants R-134a and R-407C in horizontal small tubes, International Journal of Heat and Mass Transfer 49 (2006) 207-218.
25. R. Yun, J. H. Heo, and Y. C. Kim, Evaporative heat transfer and pressure drop of R410A in microchannels, International Journal of Refrigeration 29 (2006) 92-100.
26. K. I. Choi, A. S. Pamitran, C. Y. Oh,and J. T. Oh, Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels, International Journal of Refrigeration (2007) 1-11.
27. I. Kataoka, A. Serizawa and A. Sakurai, “Transient Boiling Heat Transfer Under Forced Convection,” International Journal of Heat and Mass Transfer 26 (1983) 583-595.
28. S. Lin, P.A. Kew and K. Cornwell, “Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube,” International Journal of Refrigeration 24 (2001) 51-56.
29. T. Otsuji and A. Kurosawa, “Critical Heat Flux of Forced Convection Boiling in an Oscillating Acceleration Field : I–General Trends,” Nuclear Engineering and Design, Vol.71,(1982),pp. 15-26.
30. T. Otsuji and A. Kurosawa, “Critical Heat Flux of Forced Convection Boiling in an Oscillating Acceleration Field : II–Contribution of flow Oscillation,” Nuclear Engineering and Design, Vol.76,(1983),pp. 13-21.
31. S. Kakac, T. N. Veziroglu, M. M. Padki, L. Q. Fu, and X. J. Chen, “Investigation of Thermal Instability in a Forced Convection Upward Boiling System, ”Experimental Thermal and Fluid Science, Vol. 3,(1990),pp. 191-201.
32. M. M. Padki, H. T. Liu, and Kakac, “Two-Phase Flow Pressure-Drop type and Thermal Oscillations,” International Journal of Heat and Fluid Flow, Vol. 12,(1991),pp. 240-248.
33. Y. Ding, S. Kakac, and X. J. Chen, “Dynamic Instabilities of Boiling Two-Phase Flow in a Single Horizontal Channel, ”Experimental Thermal and Fluid Science, Vol. 11,(1995),pp.327-342.
34. O. Comakli, S. Karsli, and M. Yilmaz, “Experimental Investigate of Two Phase Flow Instability in a Horizontal in-tube Boiling System, ”Energy Convection and Management, Vol. 43,(2002),pp.249-268.
35. P. R. Mawasha and R. J. Gross, “Periodic Oscillations in a Horizontal Single Boiling Channel with Thermal Wall Capacity,” International Journal of Heat and Fluid Flow 22 (2001) 643-649.
36. P. R. Mawasha, R. J. Gross, and D. D. Quinn, “Pressure-Drop Oscillations in a Horizontal Single Boiling Channel,” Heat Transfer Engineering 22 (2001) 26-34.
37. Q. Wang, X. J. Chen, S. Kakac, and Y. Ding, “Boiling Onset Oscillation : a new type of Dynamic Instability in a Forced-Convection Upflow Boiling System,” International Journal of Heat and Fluid Flow 17( 1996) 418-423.
38. D. Brutin, F. Topin, and L. Tadrist, “Experimental Study of Unsteady Convective Boiling in Heated Minichannels,” International Journal of Heat and Mass Transfer 46 (2003) 2957-2965.
39. D. Brutin and L. Tadrist, “Pressure Drop and Heat Transfer Analysis of Flow Boiling in a Minichannel : Influence of the Inlet Condition on Two-phase Flow Stability,” International Journal of Heat and Mass Transfer 47 (2004) 2365-2377.
40. J. Shuai, R. Kulenovic, and M. Groll, “Pressure Drop Oscillations and Flow Patterns for Flow Boiling of Water in Narrow Channel,” Proceedings of International Conference on Energy and the Environment, Shanghai, China, May 22-24, 2003.
41. ASHRAE Handbook of Fundamentals 1968
42. S.W. Churchill, and H.H.S. Chu, Correlating equations for laminar and turbulent free convection from a horizontal cylinder, International Journal of Heat and Mass Transfer 18(1975)1049-1053.
43. S. J. Kline, F. A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1) (1953) 3-12.
44. R. W. Lockhart, and R. C. Martinelli, Proposed correlation of data for isothermal two-phase two component flow in pipes, Chem. Eng. Prog. 45 (1949) 39-48.
45. C. A. Chen, C. Y. Lee, and T. F. Lin, Experimental study of R-134a evaporation heat transfer in a narrow annular duct, International Journal of Heat and Mass Transfer 53 (2010) 2218–2228.
46. C. A. Chen, Time periodic flow boiling heat transfer of refrigerant R-134a in a horizontal annular duct due to flow rate or heat flux oscillation, Ph.D thesis, National Chiao Tung University, Hsinchu,Taiwan (2010).
47. C. A. Chen, C. Y. Lee, and T. F. Lin, Time Periodic flow boiling heat transfer of R-134a and associated bubble characteristics in a narrow annular duct due to flow rate oscillation, International Journal of Heat and Mass Transfer (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top