跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭昀呈
研究生(外文):Cheng, Yu-Cheng
論文名稱:LTE-A系統載波聚合盲蔽式頻率偏移同步及低複雜度空間濾波MIMO接收器之研究
論文名稱(外文):Blind Carrier Aggregation Synchronization and Low Complexity Spatial Filtering MIMO Receiver for LTE-A system
指導教授:李啟民李啟民引用關係
指導教授(外文):Li, Chi-Min
口試委員:林丁丙湯譯增吳家琪李啟民
口試委員(外文):Lin, Ding-BingTang, I-TsengWu, Jia-ChyiLi, Chi-Min
口試日期:2015-06-09
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:58
中文關鍵詞:載波聚合載波頻率偏移來向角度多輸入多輸出系統巨量天線空間濾波等化器
外文關鍵詞:Carrier aggregationCarrier frequency offsetDirection of ArrivalMultiple input multiple outputMassive MIMOSpatial filteringEqualizer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
第四代行動通訊系統以正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)為核心技術,可有效對抗通道選擇性衰落及提高頻譜效益,但容易受到頻率偏移導致錯誤率上升。為了達國際電信聯盟(International Telecommunication Union, ITU)所定訂的1Gbps的傳輸速率至少需要100MHz的頻寬,3GPP提出載波聚合(Carrier Aggregation, CA)的技術以有效分配及利用頻寬資源。本文第三章討論基於載波聚合的場景下,提出利用快速傅立葉轉換達低複雜度之盲蔽式頻率偏移估計法,相較文獻[1]方法可節省70%的計算複雜度且有效估計範圍更大。
MIMO系統中天線總數越多可使系統的傳輸量及頻譜效益提高,相對需要更大的計算複雜度,特別是對於所謂巨量天線(Massive MIMO)。本文第四章提出利用空間濾波與天線分組概念,減少不必要的天線計算以有效降低整體計算量,相較傳統天線可省去50%的計算複雜度,且有更好的效能表現。

Orthogonal Frequency Division Multiplexing (OFDM) was adopted for the fourth generation mobile communication system. OFDM system can mitigate the frequency selective fading and improve the spectral efficiency. However, it’s very sensitive to the frequency offset. To achieve the standard of International Telecommunication Union (ITU), the 100MHz bandwidth is necessary to have 1Gbps throughput. 3GPP proposes the Carrier Aggregation (CA) technique to utilize the spectral resource more efficiently. In Chapter 3, this thesis proposed a blind and low complexity algorithm for carrier frequency offset estimation based on Fast Fourier Transform. It can reduce the 70 percent computation complexity compared with the reference [1] and improve the estimation range in Carrier Aggregation scenario.
As the number of antenna increases, the throughput, spectral efficiency and computation complexity will be increased in the MIMO system, especially for the Massive MIMO. In Chapter 4, this thesis adopts the spatial filtering concept to reduce unnecessary antenna computations. It can reduce the 50 percent computation complexity and have a better performance compared with the conventional method.

摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 VI
第一章 導論 1
1.1 背景簡介及研究動機 1
1.2 論文大綱 2
第二章 LTE-A系統簡介 3
2.1 正交分頻多工 3
2.1.1 簡介 3
2.1.2 主要同步訊號之自相關估測法[9] 6
2.1.3 最大概似之同步估測法[5] 8
2.2 載波聚合 11
2.2.1 簡介 11
2.2.2 基於MUSIC之多載波頻率偏移估計法[6] 13
2.3 多輸入多輸出系統 16
第三章 載波聚合之頻率同步 19
3.1 文獻方法[1] 19
3.2 利用快速傅立葉轉換之頻率偏移估計法 23
3.3 載波偏移與抵達來向的多重估計 31
3.4 實測通道分析 35
第四章 低複雜度之空間濾波MIMO接收器 38
4.1 文獻方法[2] 38
4.2 提出之低複雜度空間濾波MIMO接收器 42
4.3 模擬分析 47
4.4 實測通道分析 54
第五章 結論 56
參考文獻 57

[1] Zhongren Cao; Tureli, U.; Yu-Dong Yao, “Deterministic multiuser carrier frequency offset estimation for interleaved OFDMA uplink,” Communications, IEEE Transactions on , vol.52, no.9, pp.1585,1594, Sept. 2004
[2] Ichikawa, Yoshihiro, et al. “A computation reduced MMSE adaptive array antenna using space-temporal simultaneous processing equalizer.” IEICE Transactions on Communications 85.12 (2002): 2622-2629.
[3] Ishii, N.; Kohno, R., “Spatial and temporal equalization based on an adaptive tapped-delay-line array antenna,” Personal, Indoor and Mobile Radio Communications, 1994. Wireless Networks - Catching the Mobile Future., 5th IEEE International Symposium on , vol.1, no., pp.232,236 vol.1, 18-23 Sep 1994
[4] Chao-Yuan Hsu; Wen-Rong Wu, “A low-complexity zero-forcing CFO compensation scheme for OFDMA uplink systems,” Wireless Communications, IEEE Transactions on , vol.7, no.10, pp.3657,3661, October 2008
[5] van de Beek, J.-J.; Sandell, M.; Borjesson, P.O., “ML estimation of time and frequency offset in OFDM systems,” Signal Processing, IEEE Transactions on , vol.45, no.7, pp.1800,1805, Jul 1997
[6] Yu-Ting Sun; Jia-Chin Lin, “Multi-carrier frequency-offset estimation based on MUSIC for carrier-aggregation orthogonal frequency-division multiplexing communications,” Communications and Information Technology (ICCIT), 2012 International Conference on , vol., no., pp.408,412, 26-28 June 2012
[7] Qingzhan Zeng; Zhiping Shi; Wentao Wang; Zijia Hu, “Analyses of Interferences between Component Carriers in Carrier Aggregation,” Communications and Mobile Computing (CMC), 2011 Third International Conference on , vol., no., pp.420,423, 18-20 April 2011
[8] Ratasuk, R.; Tolli, D.; Ghosh, A., “Carrier Aggregation in LTE-Advanced,” Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st , vol., no., pp.1,5, 16-19 May 2010
[9] Shoujun Huang; Yongtao Su; Ying He; Shan Tang, “Joint time and frequency offset estimation in LTE downlink,” Communications and Networking in China (CHINACOM), 2012 7th International ICST Conference on , vol., no., pp.394,398, 8-10 Aug. 2012
[10] Al-Shibly, M.A.M.; Habaebi, M.H.; Chebil, J., “Carrier aggregation in Long Term Evolution-Advanced,” Control and System Graduate Research Colloquium (ICSGRC), 2012 IEEE , vol., no., pp.154,159, 16-17 July 2012
[11] Yun Rui; Peng Cheng; Mingqi Li; Zhang, Q.T.; Guizani, M., “Carrier aggregation for LTE-advanced: uplink multiple access and transmission enhancement features,” Wireless Communications, IEEE , vol.20, no.4, pp.101,108, August 2013
[12] Wenjia Liu; Shengqian Han; Chenyang Yang; Chengjun Sun, "Massive MIMO or small cell network: Who is more energy efficient?," Wireless Communications and Networking Conference Workshops (WCNCW), 2013 IEEE , vol., no., pp.24,29, 7-10 April 2013
[13] Rao, T.N.; Rao, V.S., “Evaluation of MUSIC algorithm for a smart antenna system for mobile communications,” Devices, Circuits and Systems (ICDCS), 2012 International Conference on , vol., no., pp.67,71, 15-16 March 2012
[14] Beheshti, M.; Omidi, M.J.; Doost-Hoseini, A.M., “Frequency-domain equalization for MIMO-OFDM over doubly selective channels,” Telecommunications (IST), 2010 5th International Symposium on , vol., no., pp.431,436, 4-6 Dec. 2010
[15] Baojm Li; Qixing Wang; Guoquan Lu; Yongyu Chang; Dacheng Yang, “Linear MMSE Frequency Domain Equalization with Colored Noise,” Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th , vol., no., pp.1152,1156, Sept. 30 2007-Oct. 3 2007
[16] Ishii, N.; Kohno, R., “Spatial and temporal equalization based on an adaptive tapped-delay-line array antenna,”Personal, Indoor and Mobile Radio Communications, 1994. Wireless Networks - Catching the Mobile Future., 5th IEEE International Symposium on , vol.1, no., pp.232,236 vol.1, 18-23 Sep 1994
[17] Matsuoka, H.; Shoki, H., “Comparison of pre-FFT and post-FFT processing adaptive arrays for OFDM systems in the presence of co-channel interference,” Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on , vol.2, no., pp.1603,1607 vol.2, 7-10 Sept. 2003
[18] 孫維澤, “Modification of the S&;C Synchronization Method for a OFDM System,”國立臺灣海洋大學通訊與導航工程學系2010.9
[19] 林家鴻, “Downlink Synchronization and Inter-cell-Interference Coordination of a 3GPP LTE-A system”國立臺灣海洋大學通訊與導航工程學系2013.6
[20] Rodger E. Ziemer and William H. Tranter. 2008. Principles of Communications (2th ed.). Wiley Publishing.
[21] Joseph C. Liberti and Theodore S. Rappaport. 1999. Smart Antennas for Wireless Communications: Is-95 and Third Generation CDMA Applications. Prentice Hall PTR, Upper Saddle River, NJ, USA.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top