跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱詠慶
研究生(外文):Chu,Yung-Ching
論文名稱:奈米銀粒印刷軟板天線設計
論文名稱(外文):Design of Flexible Thin-Film Antenna Using Silver Nanoparticles
指導教授:盧裕溢盧裕溢引用關係
指導教授(外文):Lu,Yuh-Yih
口試委員:黃祥哲鄭益昌
口試委員(外文):HUANG,HSIANG-CHEZHENG,YI-CHANG
口試日期:2015-06-29
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:85
中文關鍵詞:偶極平面天線奈米銀粒軟板印刷天線噴墨印刷
外文關鍵詞:planar dipole antennasilver nanoparticlesflexible thin-flimLTEWLANPIPP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文以玻璃纖維板(FR4)、聚醯亞胺薄膜(Polyimide Fil)及一般相片紙(Photo Paper)三種材質作為設計天線基板,使用IE3D電磁模擬軟體,設計出多頻段偶極平面天線,包含可應用於操作頻段1200MHz及1800MHz之FR4基板偶極平面天線及應用於操作頻段2100MHz、4800MHz及5800MHz之PI基板偶極平面天線。本論文也利用PP基板實作出可應用於5300MHz及5600MHz之偶極平面天線。
本論文改變L2尺寸參數,觀察改變尺寸參數及基板對天線特性的影響。經由改變基板材質,製作出包含GSM、WLAN、無線監視器及LTE頻段之偶極平面天線。從PI薄膜厚度及烘烤方式之探討,並經由分析各參數變化之影響,得到較佳基板參數為厚度0.12mm PI真空恆溫烤箱烘烤二次之阻抗值較佳。
經由IE3D模擬軟體觀察FR4基板改變天線尺寸L2參數對天線特性之影響,並實作出兩種天線,頻寬從1070MHz到1370MHz及頻寬從1.78MHz到1.98MHz之兩組天線,在操作頻率1200MHz反射損失為-29.3dB,最大增益為4.296dBi。在操作頻率1800MHz反射損失為-32.3dB,最大增益為3.593dBi。此兩組天線可應用於無線監視器1200MHz與LTE 1800MHz之頻段。
改變基板為PI以IE3D模擬其特性參數,且觀察改變天線尺寸L2參數對天線特性之影響,以噴墨印表機將奈米銀粒印刷於PI基板上製作出三種天線。頻寬從1500MHz到2500MHz與頻寬從4200MHz到4950MHz及頻寬從5400到5800MHz之三組天線。在操作頻率2100MHz,反射損失為-17.6dB,最大增益為2.183dBi。在操作頻率4800MHz反射損失為-38.9dB,最大增益為3.509dBi。在操作頻率5800MHz反射損失為-16.4dB,最大增益為3.599dBi。此三組天線可應用於LTE 2100MHz、C-Band 4800MHz、WLAN(801.11ac) 5800MHz之頻段。
改變基板為PP以IE3D模擬其特性參數,並觀察改變天線尺寸L2參數對天線特性之影響,以噴墨印表機將奈米銀粒印刷於PP基板上製作出三種天線。頻寬從5100MHz到5500MHz與頻寬從5300MHz到5700MHz及頻寬從4600MHz到5400MHz之三組天線。此三組天線分別可應用於WLAN(801.11ac) 5300MH及WLAN(801.11ac)5600MHz之頻段。

關鍵字:偶極平面天線、奈米銀粒、軟板印刷天線、噴墨印刷、LTE、WLAN、PI、PP。

In this paper, three materials including glass epoxy (FR4), polyimide film (PI) and photo paper (PP) are used as the substrate of antenna. IE3D software is used to design planar dipole antennas with various substrates.The fabricated planar dipole antenna with FR4 substrate can be applied to 1200MHz and 1800MHz frequency bands, the antenna withPI substrate can be applied to 2100MHz, 4800MHz and 5800MHz frequency bands, and the antenna with PP substrate can be applied to 5300MHz and 5600MHz frequency bands.
In this study, the size parameter L2 and the substrate material of antenna are changed to observe the variations of antenna characteristics. The PI film thickness and curing process are discussed in this thesis.The thickness of PI substrate about 0.12mm and two vacuum curing processesare obtained to achieve betterimpedance value.
Changing L2 parameters of planar dipole antennas with FR4 substrate, two antennas are proposed in this study.The antenna withbandwidth from1070MHz to 1370MHz,reflection loss -29.3dB and the maximum gain 4.296dBi at 1200MHz can be used for 1200MHz wireless monitors. The antenna with bandwidth from 1.78MHz to 1.98MHz,reflection loss -32.3dB and maximum gain 3.593dBi at 1800MHz can be used in LTE 1800MHz.
With suitable L2 parameter, the inkjet printer is used to print silver nanoparticles and fabricate three flexible thin-film antennas with PI substrates. The bandwidths of these antennas are from 1500MHz to 2500 MHz,4200 MHz to 4950 MHz and 5400 to 5800 MHz.The reflection loss is -17.6dB and maximum gain is 2.183dBi at 1200MHz. The reflection loss is -38.9dB and maximum gain is 3.509dBi at 4800MHz. The reflection loss is -16.4dB and maximum gain is 3.599dBi at 5800MHz. These antennas can be applied to LTE 2100MHz, C-Band 4800MHz, and WLAN (801.11ac) 5800MHz frequency bands.
PP substrate, suitable L2 parameter, and silver nanoparticles are used to produce three flexible thin-film antennas with PP substrates. The bandwidths of these antennas are from 5100MHz to5500MHz, 4600MHz to 5400MHz, and5300MHz to 5700MHz.One antenna exhibits reflection loss-22.5dB,maximum gain3.257dBi at 5300MHz and another antenna with reflection loss -37.6dB andmaximum gain4.175dBiat 5300MHz. The reflection loss is -32.4dB and the maximum gain is 4.834dBi at 5600MHz. These antennas can be applied to WLAN (801.11ac) 5300MHz, WLAN (801.11ac) 5600MHz.

Keywords: planar dipole antenna, silver nanoparticles, flexible thin-film,LTE, WLAN, PI, PP.

摘要
Abstract
致謝
目錄
第一章、序論
1.1研究動機與目的
1.2 軟性印刷電路板
1.3內容提要
第二章、基本原理與探討
2.1 金屬奈米銀的介紹
2.2 聚亞醯胺薄膜介紹
2.3 電性理論
2.3.1 歐姆定律
2.3.2 導電度
2.3.3 表面電阻率
2.4偶極天線介紹
2.4.1 半波長偶極天線
2.5天線基本參數
2.5.1 S參數
2.5.2反射損失
2.5.3電壓駐波比
2.5.4共振頻率
2.5.6天線極化
2.5.6天線增益
2.5 實驗儀器
第三章、PI奈米銀粒導電軟板設計與分析
3.1導電軟板厚度分析
3.1.1 聚亞醯胺0.05mm自然風乾之奈米銀粒接著度
3.1.2 聚亞醯胺0.05mm紅外線照射燈烘烤之奈米銀粒接著度
3.2 聚亞醯胺0.05mm恆溫烤箱烘烤之奈米銀粒接著度
3.3 聚亞醯胺0.12mm恆溫烤箱烘烤之奈米銀粒接著度
3.4本章結論
第四章、奈米銀粒導電薄膜倒L支線偶極PI軟板天線設計
4.1 傳統FR4基板倒L支線偶極天線設計
4.2 PI基板倒L支線平面偶極天線模擬
4.3天線實測結果與分析
4.3.1 以FR4為基板之倒L支線平面偶極天線
4.4 改變L2以FR4為基板天線輻射場型圖
4.5 PI薄膜基板倒L支線平面偶極天線實測與分析
4.6 以PI薄膜為基板改變L2之天線輻射場型圖
4.7 FR4與PI基板之實測比較
4.8本章結論
第五章、奈米銀粒導電薄膜倒L支線偶極PP軟板天線設計
5.1 PP基板之阻抗分析
5.2 PP基板倒L支線偶極天線模擬分析
5.3改變L2及基板材質之偶極天線模擬反射損失比較分析
5.4 PP基板偶極天線實測與分析
5.5 FR4與PI基板與PP基板偶極天線之實測比較
5.6 本章結論
第六章、結論
第七章、參考文獻

[1] http://zh.wikipedia.org/wiki/維基百科
[2]http://www.hk-phy.org/history/chi/edison.html
[3] Rujitanaroj, P.; Pimpha, N.; Supaphol, P. “Preparation of Ultrafine Poly(ethylene oxide)/Poly(ethylene glycol) Fibers Containing Silver Nanoparticles as Antibacterial Coating” p1065 – 1070,2007.
[4]http://nano.nchc.org.tw奈米科學網
[5] 周更生、李賢學、高振裕、盧育杰,「奈米銀」,科學發展月刊,第 408 期, p32-39,2006。
[6] 呂晃志、蔡宜壽,「銀系無機抗菌材料的開發」,化工資訊與商情,第 44 期,p38-45,2007;第 45 期,p56-62,2007。
[7] I. Sondi, B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria”, J. Colloid. Interface. Sci. 275, p177-182, 2004.
[8] S. Jing, S. Xing, L. Yu, C. Zhao, “Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid”, Mater. Lett. 61, p4528-4530, 2007.
[9] C. R.K. Rao, D.C. Trivedi, “Synthesis and characterization of fatty acids passivated silver nanoparticles—their interaction with PPy”, Synthetic Metals 155, p324-327, 2005.
[10] P. Rita, D. David, V.-A. Donaji, R.-G. Geonel, S.-J. Patricia, “Synthesis and direct interactions of silver colloidal nanoparticles with pollutant gases”, Colloid Polym. Sci. Online, 2007.
[11] J.-W. Kim, J.-E. Lee, S.-J. Kim, J.-S. Lee, J.-H. Ryu, J. Kim, S.-H. Han, I.-S. Chang, K.-D. Suh, “Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres”, Polymer 45, p4741-4747, 2004.
[12]Yiamsawas,D. ; Pathumthani ; Lauruengtana,V. ; Ruktanonchai,U. ; Kangwansupamongkon,W.“Synthesis of Poly(vinylpyrrolidone)-Stabilized Silver Nanoparticles” 2nd IEEE International Conference on. p 1089 – 1092,
[13]賴柏洲,「基本電學」,全華圖書,第六版,p12-86,2011。
[14]黃胤年,「電波傳導與天線」,五南出版社,p28-243,2007。
[15] 黃獻鋒,「無線通信時代的天線設計」,全華圖書,p8-201,2008。
[16]K. Janeczek M. Jakubowska, G. Kozioł A. Młoz˙ niakA. Araz´na“Investigation of ultra-high-frequency antennas printed with polymer pastes on flexible substrates” IET Microwaves, Antennas & Propagation Revised on 7th February 2012.
[17]Yu-Jiun Ren, Member, IEEE, Hoseon Lee, Amin Rida, Member, IEEE,Symeon Nikolaou, Member, IEEE, and Manos M. Tentzeris, Fellow, IEEE “Monopole Antenna With Inkjet-Printed EBG Arrayon Paper Substrate for Wearable Applications” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012.
[18] http://www.fetc.com.tw/new_products.htm奈米銀超導電油墨
[19] Stricker, D.A. ; Alba, G.P. ; Anderson, C.C. ; Bing, D.D. “Characteristics of high-transmission-probability tunnel junctions for use as particle detectors”IEEE Transactions,p1343–1346,2002.
[20]Yuh-Yih Lu, Jun-Yi Guo, Hsiang-Cheh Huang, “Design of Triple Symmetric Arms Dipole Antenna for 900/1800/2450MHz Applications”, IEEE Computer Society, 10th IIHMSP, 2014.
[21] W. Peng, V. Hurskainen, K. Hashizume, S. Dunford, S. Quander, R. Vatanparast. ” Flexible Circuit Creation with Nano Metal Particles” Electronic Components and Technology Conference, p77-82, 2005.
[22]K. Janeczek M. Jakubowska G. Kozioł A. Młoz˙ niak A. Araz´na “Investigation of ultra-high-frequency antennas printed with polymer pastes on flexible substrates” IET Microw. Antennas Propag., 2012, Vol. 6, Iss. 5, p549–554, 2012.
[23] Wei, T., Ruan, J., Fan, Z., Luo, G., Wei, F.: “Preparation of acarbon nanotube film by ink-jet printing”Carbon, 45,p2692–2716, 2007.
[24] Carroll, D.L., Czerw, R., Webster, S.: “Polymer–nanotube compositesfor transparent, conducting thin”, Synth. Met., p694–697,2005.
[25]Kordaˇs, K., Mustonen, T., To´th, G.: ‘Inkjet printing of electricallyconductive patterns of carbon nanotubes’, Small,p1021–1025, 2006.
[26] Słoma, M., Jakubowska, M., Kolek, A.: ‘Investigations on printedelastic resistors containing carbon nanotubes’, J. Mater. Sci., Mater.Electron., p1321–1329, 2011.
[27] Collins, P.G., Avouris, P.: ‘Nanotubes for electronics’, Sci. Am., p 62–69, 2005.
[28]Pachler, W. ; ; Grosinger, J. ; Bosch, W. ; Holweg, G. “A silver inkjet printed ferrite NFC antenna” LAPC, p95-99, 2014.
[29]Tentzeris, M.M.; Vyas, R.; Lakafosis, V.; Traille, A.; Hoseon Lee; Gebara, E.;Marroncelli, M. “Inkjet-printed RFIDs for wireless sensing and anti-counterfeiting” EUCAP 6th, p3481-3482, 2012.
[30] Sangkil Kim, Yu-Jiun Ren, Hoseon Lee, Amin Rida, Symeon Nikolaou, Manos M. Tentzeris, “Monopole Antenna With Inkjet-Printed EBG Arrayon Paper Substrate for Wearable Applications” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012
[31] P. S.Hall and Y.Hao, “Antennas and propagation for body centriccommunications,” in Proc. EuCAP, p1–7, 2006.
[32] A. Rida, L. Yang, R. Vyas, and M. M. Tentzeris, “Conductive inkjetprintedantennas on flexible low-cost paper-based substrates for RFIDand WSN applications,” IEEE Antennas Propag. Mag., vol. 51, no. 3,p13–23, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top