跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱進隆
研究生(外文):Chin-Lung Chiu
論文名稱:鋼筋混凝土內部缺陷之合成聚焦顯像法
論文名稱(外文):A Synthetic Aperture Focusing Technique for Imaging Defects inside the Reinforced Concrete Element
指導教授:王仲宇童建樺
指導教授(外文):Chung-Yue WangJian-Hua Tong
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:158
中文關鍵詞:混凝土結構缺陷孔洞彈性波非破壞檢測希爾伯特-黃轉換影像
外文關鍵詞:concrete structuredamagevoidelastic wavenon-destructive testingHHTimage
相關次數:
  • 被引用被引用:2
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
運用彈性波檢測混凝土結構內部缺陷之方法眾多且已行之有年,但眾多的技術在早期檢測上的運用大部分是屬於點-線的檢測方式,檢測結果較為局部。而隨著計算機軟硬體的迅速發展,許多專家學者將彈性波搭配影像分析也逐漸發展成為一新的檢測技術。然而,這其中大部分的檢測方法均只針對純混凝土試體進行探討。而實際的混凝土結構物往往都有鋼筋的存在。因此,本研究即針對含有鋼筋的混凝土試體利用彈性波合成聚焦顯像法進行敲擊掃描研究。
文中以暫態彈性波為基礎,結合合成聚焦顯像法,發展混凝土結構物內部缺陷顯像技術。在研究中均以有限差分法數值模擬,初步進行多個內含異質缺陷之混凝土試體進行敲擊訊號模擬及聚焦顯像,後續再搭配實驗,驗證該研究之可行性。
在研究之初,先以單測面時間域之速度訊號進行聚焦顯像。在數值與實驗的結果中,均顯示不論是孔洞亦或是裂縫缺陷在純混凝土試體中均有不錯的顯像效果。文中亦深入探討鋼筋對於合成聚焦顯像法之影響,並成功定量出掃描影像與鋼筋-波長間的相互關係。接續,以先進的時頻域訊號處理方法(Hilbert-Huang Transform, HHT),利用其可分析非線性及非穩態訊號之特點,並對於訊號中之不連續在時頻訊號上會有明顯頻率跳動之優勢,藉以凸顯檢測訊號中的缺陷反射訊號,進而獲得更佳品質的混凝土結構內部缺陷顯像。
而就單一測面檢測時,顯像結果會導致缺陷資訊有所缺漏之問題。在文中提出了以多測面聚焦影像疊加來加以改善,能夠更加完整地呈現結構物內部缺陷資訊。並提出以影像重建之方法重新修正疊加影像,使檢測圖像辨識度大幅提升。後續,亦針對彈性波合成聚焦影像之影像品質進行探討。文中將影像品質區分為解析度與對比度兩種控制因子。並依據分析結果提出未來於現地實際運用時可依循之標的。
最後,本文依據合成聚焦顯像法理論與操作方式,結合類比-數位轉換卡(A/D card)及筆記型電腦,架構一套混凝土結構內部缺陷檢測系統。配合圖形介面的硬體控制及訊號、影像處理程式之開發,縮減了運用暫態彈性波合成聚焦顯像法檢測混凝土缺陷之操作時程,使系統能夠有效率地應用於現地混凝土結構之非破壞性檢測。

This study combined with the transient elastic wave propagation theory and the synthetic aperture focusing technique (SAFT) to develop a method for imaging the defects inside the reinforced concrete structure. In the study, the finite deference method was used to simulate the stress wave propagation behavior in the concrete specimen with embedded defects and verified the results by the experiment.
For most of the existing elastic-wave-based nondestructive testing methods, it is hard to detect defects inside reinforced concrete elements owing to the complex signals reflected from rebars. Therefore, this study conferred the possibility for using SAFT to scan and image the defects inside the reinforced concrete. In the first, the time-velocity curves were used to get an image by SAFT. The numerical and experimental images also show nice results can be obtained either holes or cracks inside the absolute concrete specimens. Next, the influence of the rebar on quality of SAFT image was quantitatively analyzed by a serious of numerical simulations. The experimental results show good agreements with the quantitative analyzing results. Then, the time-frequency analysis was further used to transform the original time domain signals. After the transform, the instantaneous frequency can occur an obviously hopping in the non-continuous of the signals. According to the property of HT, the reflection signal can be highlighted and get better SAFT image.
This study also brought up to a multi-directional many-dimensional inspection technique to improve problem of the defect information missing in the one-directional inspection and used image reconstruct technique to upgrade the integrity of defect image. The image quality (resolution and contrast) of SAFT quality was qualitative analyzed by elastic wave theory and finite deference. From the analysis results, It is shown that this newly developed an inspecting procedure for in situ detection is fairly good.
Finally, a hardware system for detecting and imaging the defects inside the reinforced concrete based on the SAFT theory and operation procedure was developed. Due to the integration of the hardware control of graphical interface and the signal and image processing program, the total time for SAFT detection is dramatically reduced. The system can be more suitable for in situ non-destructive testing of the reinforced concrete.

目錄
摘要........................I
Abstract...................... II
誌謝.......................III
目錄.......................IV
表目錄.......................VII
圖目錄......................VIII
第 1 章 導論 ....................1
1.1 研究動機 ...................... 1
1.2 文獻回顧 ...................... 2
1.2.1 彈性波檢測技術....................2
1.2.2 混凝土結構物顯像技術...................4
1.3 論文架構 ...................... 6
第 2 章 數值模擬與顯像原理...............7
2.1 彈性波有限差分原理.................. 7
2.1.1 彈性波動方程式....................7
2.1.2 有限差分方程式....................9
2.2 時間域合成聚焦顯像法原理 .................13
2.2.1 單測面檢測法.....................13
2.2.2 多測面檢測法.....................15
2.2.3 合成權重參數應用....................18V
2.3 時頻域合成聚焦顯像法..................21
2.3.1 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)原理............21
2.3.2 瞬時頻率合成法...................23
第 3 章 單測面時間域合成聚焦顯像模擬與實驗........... 27
3.1 純混凝土聚焦影像 ...................27
3.1.1 純混凝土數值模擬....................27
3.1.2 純混凝土實驗結果....................40
3.2 鋼筋混凝土速度聚焦顯像................53
3.2.1 鋼筋混凝土數值模擬..................53
3.2.2 鋼筋效應分析.....................59
3.2.3 鋼筋混凝土實驗結果..................67
第 4 章 單測面時頻域合成聚焦顯像模擬與實驗........... 74
4.1 純混凝土聚焦顯像 ...................74
4.1.1 純混凝土數值模擬....................74
4.1.2 純混凝土實驗結果....................82
4.2 鋼筋混凝土聚焦顯像..................87
4.2.1 鋼筋混凝土數值模擬..................87
4.2.2 鋼筋混凝土實驗結果..................89
第 5 章 多測面時間域合成聚焦顯像模擬與實驗........... 93
5.1 純混凝土試體多測面影像................93
5.1.1 純混凝土數值模擬....................93
5.1.2 純混凝土實驗結果...................101
5.2 鋼筋混凝土試體多測面影像 ................107
5.2.1 鋼筋混凝土數值模擬...................107
5.2.2 鋼筋混凝土實驗結果...................110
第 6 章 彈性波合成聚焦影像品質探討 ...........114VI
6.1 影像解析度探討....................114
6.1.1 波傳簡化模型解析度分析..................115
6.1.2 數值驗證......................119
6.2 影像對比度探討....................122
6.2.1 波傳簡化模型對比度分析..................122
6.2.2 數值驗證......................125
第 7 章 彈性波合成聚焦顯像系統.............127
7.1 系統架構 .....................127
7.2 訊號擷取單元....................132
7.3 影像處理單元....................133
第 8 章 結論與未來展望 .................137
8.1 結論......................137
8.2 未來展望 .....................138
第 9 章 參考文獻...................140
[1] Breysse, Denys, Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques, London, (2012).
[2] Gruber, G. J., “Defect Identification and Sizing by the Ultrasonic Satellite-Pulse Technique”, Journal of Nondestructive Evaluation, Vol. 1, No. 4, pp. 263-276(1980).
[3] Temple J., “Time-Of-Flight Inspection: Theory” , Nuclear Energy, 22, No. 5, pp. 335-348(1983).
[4] Silk, M., “The Interpretation of TOFD Data In the Light of ASME XI and Similar Rules” , British Journal of NDT, Vol. 31, No. 5, pp. 242-251(1989).
[5] Carino, N.J., The Impact-Echo Method An Overview, Gaithersburg, MD, USA, (2001).
[6] Carino, N.J., Sansalone, M., and Hsu, N.N., "Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms," International Advances in Nondestructive Testing, 12th Edition, W.J. McGonnagle, Ed., Gordon & Breach Science Publishers, New York, pp. 117-146(1986).
[7] Sansalone, M., and Carino, N.J., "Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves," NBSIR 86-3452, National Bureau of Standards, Gaithersburg, Maryland, Sept., pp. 222(1986).
[8] Sansalone, M., and Carino, N.J., "Laboratory and Field Study of the Impact-Echo Method for Flaw Detection in Conerete," in Nondestructive Testing of Concrete, ACI Special Publication, pp. 1-20(1988).
[9] Cheng, C. and Sansalone, M., "The Impact-Echo Response of Concrete Plates Containing Delaminations-Numerical, Experimental, and Field Studies," RILEM: Materials and Structures, Vol. 26, pp. 274-285(1993) .
[10] Lin, Y. and Sansalone, M., "Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method," ACI Materials Journal, Vol. 89, No. 4, pp. 394-405(1992).
[11] Lin, Y.F., Lin, Y., and Tsai, B.Y., “Evaluating Bond Quality at the Interface Between Reinforcing Bars and Concrete Using the Impact-Echo Method,” ACI Materials Journal, Vol. 101, No. 2, pp. 154-161(2004).
[12] Lin, Y., Yen, J.Y.R., and Chen, C.F., "Tracing Initiation and Propagation of Cracks in Composite Slabs," Journal of Structural Engineering, ASCE, Vol. 122, No. 7, pp. 756-761 (1996).
[13] Wu, T.T. and Fang, J.S., “A new method for measuring concrete elastic constants using horizontally polarized conical transducers,” J. Acoust. Soc. Am., Vol. 101, No.1, pp. 330-336(1997).
[14] Wu, T.T., Fang, J.S., Liu, G.Y. and Kuo, M.K., “Detection of elastic constants of a concrete specimen using transient elastic waves,” J. Acoust. Soc. Am., Vol. 98, No. 4, pp.2142-2148(1995).
[15] Liu, P.L., Lee, K.H, Wu, T.T., Kuo, M.K., “Scan of Surface-opening Cracks in Reinforced Concrete Using Transient Elastic Waves”, NDT & E International, Vol. 34, pp. 219-226(2001).
[16] Nazarian, S. and Desai, R., “Automated surface wave method: Field testing,” J.Geotechnical Engineering, Vol. 119, No. 7, pp. 1094-1111(1993).
[17] Mori K., Spagnoli A., Murakami Y., Kondo G., Torigoe I., “A new non-contacting non-destructive testing method for defect detection in concrete,” NDT&E International, Vol. 35, pp. 399-406(2002).
[18] Boyd, Andrew J., ASCE M. and Ferraro, Christopher C., Torigoe, I., “Generalizing MUSIC and MVDR for Multiple Noncoherent Arrays,” Journal of Material in Civil Engineering, pp.153-158 (2005).
[19] Markus KRUGER, “Crack Depth Determination using advanced impact-echo techniques,” ECNDT pp.1~9 (2006).
[20] Waszak, John and Ludwig, Reinhold, “Three-dimensional ultrasonic imaging employing a time-domain synthetic aperture focusing technique,” IEEE Transactions on Instrumenrtation and Measurment. Vol. 39. No. 2 (1990).
[21] Liu, Pei Ling, Tsai, Chong Dao and Wu, Tsung Tsong, “Imaging of surface-breaking concrete crack using transient elastic waves,” NDT&E International, VOL. 29, No. 5, pp. 323-331 (1997).
[22] Krause, M., B~rmann, M., Frielinghaus, R., Kretzschmar, F. Kroggel, O., Langenberg, K. J., Maierhofer, C., Muller, W., Neisecke, J., Schickert, M., Schmitz, V., Wiggenhauser, H. and Wollbold, F., “Comparison of pulse-echo methods for testing concrete,” NDT&E International, Vol. 30, No.4, pp. 195-204 (1997).
[23] Krause, M., Mielentz, F., Milman, B., Muller, W., Schmitz, V., Wiggenhauser, H., “Ultrasonic imaging of concrete members using an array system,” NDT&E International, Vol. 34, pp. 403-408 (2001).
[24] 黃界超,「斷層掃描法在土木結構之應用評估」,碩士論文,國立中央大學土木工程研究所,桃園(1997)。
[25] 紀聖威,『線性走時內差法於土木構件斷層掃描之應用』,碩士論文,國立中央大學土木工程研究所,桃園(1998)。
[26] 張益瑄,『三維線性走時內插法於土木構件斷層掃描之應用』,碩士論文,國立中央大學土木工程研究所,桃園(2001)。
[27] 楊政穎,『鋼筋混凝土構件斷層掃描之顯像處理』,碩士論文,國立中央大學土木工程研究所,桃園(2003)。
[28] Chang, Young-Fo, Wang, Chung-Yue, Hsieh, Chao-Hui, “Feasibility of detecting embedded cracks in concrete structures by reflection seismology,” NDT&E International, Vol. 34, pp. 39-48 (2001).
[29] Martin, J., Broughton, K.J., Giannopolous, Hardy, A., M.S.A., Forde, M.C., “Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams,” NDT&E International, Vol. 34, pp. 107-113 (2001).
[30] Ohtsu, Masayasu and Watanabe, Takeshi, “Stack imaging of spectral amplitudes based on impact-echo for flaw detection,” NDT&E International, Vol. 35, pp. 189-196 (2002).
[31] Watanabe, Takeshi, Morita, Takashi, Hashimoto, Chikanori, Ohtsu, Masayasu, “Detecting voids in reinforced concrete slab by SIBIE,” Construction and Building Materials Vol.18, pp.225-231 (2004).
[32] Schickert, Martin, Krause, Martin and Muller, Wolfgang, “Ultrasonic Imaging of Concrete Elements Using Reconstruction by Synthetic Aperture Focusing Technique,” Journal of Material in Civil Engineering, pp.235-246 (2003).
[33] 鄭明遠,「合成聚焦影像掃描於混凝土結構缺陷檢測之初步研究」,碩士論文,中華大學土木工程研究所,新竹(2004)。
[34] 林朝慶,「合成聚焦影像掃描於混凝土結構缺陷檢測之三維數值模擬與實驗研究」,碩士論文,中華大學土木工程研究所,新竹(2005)。
[35] Tong, Jian-Hua, Liao, Shu-Tao, Lin, Chao-Ching, “A New Elastic-Wave-Based Imaging Method for Scanning the Defects inside the Structure,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, No. 1, January, pp. 128-137(2007).
[36] 邱進隆,「以應力波與合成聚焦法掃描混擬土缺陷之骨材與邊界效應的數值模擬與實驗驗證」,碩士論文,中華大學土木工程研究所,新竹(2007)。
[37] 阮文彥,「以應力波與合成聚焦法掃瞄混凝土之鋼筋與缺陷效應的數值模擬與實驗驗證」,碩士論文,中華大學土木工程研究所,新竹(2007)。
[38] Sridharana, C., Muralidharana, A., Balasubramaniama, K. & Krishnamurthya, C. V., “A simulation study on the impact echo array technique,” Nondestructive Testing and Evaluation, Vol. 21, No. 3-4, pp. 123-140 (2006).
[39] Sridharana, C., Muralidharana, A., Balasubramaniama, K. & Krishnamurthya, C. V., “IMPACT ECHO ARRAY TECHNIQUE FOR CONCRETE,” AIP Conf. Proc. 894, pp. 1353-1360(2007).
[40] Shlivinski, A., Langenberg, K.J., “Defect imaging with elastic waves in inhommogeneous-anisotropic materials with composite geometries,” Ultrasonics 46: 89-104 (2007).
[41] Ferraro, Christopher C., Boyd, Andrew J., and Hamilton III, H.R., “Detection and Assessment of Structural Flaws in Concrete Bridges with NDT Methods,” Research in Nondestructive Evaluation, 18:179-192 (2007).
[42] Aggelis, D.G., Shiotani, T., “Repair evaluation of concrete cracks using surface and through-transmission wave measurements,” Cement & Concrete Composites 29 :700–711 (2007).
[43] Cheng, Chia-Chi, Cheng, Tao-Ming, Chiang, Chih-Hung, “Defect detection of concrete structures using both infrared thermography and elastic waves,” Automation in Construction 18:87–92 (2008).
[44] Algernon, D., Gräfe, B., Mielentz, F., Köhler, B., Schubert, F., “Imaging of the Elastic Wave Propagation in Concrete Using Scanning Techniques Application for Impact-Echo and Ultrasonic Echo Methods,” J Nondestruct Eval 27: 83–97 (2008).
[45] Li, Qiufeng, Jin Xinhong, Zhao, Min, Shi, Lihua, Shao, Zhixue, “Simulation on Improving Imaging Resolution of SAFT,” International Conference on Measuring Technology and Mechatronics Automation (2009).
[46] Liu, Pei-Ling, Yeh, Po-Liang, “Vertical spectral tomography of concrete structures based on impact echo depth spectra,” NDT&E International43(2010)45–53 (2010).
[47] Liu, Pei-Ling, Yeh, Po-Liang, “Spectral tomography of concrete structures based on impact echo depth spectra,” NDT&E International 44: 692–702 (2011).
[48] Tong, Jian-Hua, Chiu, Chin-Lung, Wang, Chung-Yue, “Improved Synthetic Aperture Focusing Technique by Hilbert-Huang Transform for Imaging Defects inside a Concrete Structure,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 57, No. 11, pp. 2512-2521 (2011).
[49] 童建樺,「彈性波混凝土品質檢測系統之研製與應用」,博士論文,國立臺灣大學應用力學研究所,台北(2001)。
[50] 方金壽,「暫態彈性波在混凝土品質與裂縫偵測之應用」,博士論文,國立臺灣大學應用力學研究所,台北(1996)。
[51] Huang, N.E., Shen, Z., Long, S.R., Wu, M. C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., and Liu, H.H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond., Vol. A454, pp. 903–995(1998).
[52] Huang, N.E., Wu, M.L., Long, S.R., Shen, S.S., Qu W.D., Gloersen P., and Fan, K.L., “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. Lond. A, Vol. 459, pp. 2317–2345(2003).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊