|
Refferences 1.Who., World malaria report 2014. 2015: World Health Organization. 2.Organization, W.H., Malaria elimination: a field manual for low and moderate endemic countries. 2007. 3.Teklehaimanot, H.D., et al., Malaria in Sao Tome and principe: on the brink of elimination after three years of effective antimalarial measures. Am J Trop Med Hyg, 2009. 80(1): p. 133-40. 4.Lee, P.W., et al., Pre-elimination of malaria on the island of Principe. Malar J, 2010. 9: p. 26. 5.Okumu, F.O. and S.J. Moore, Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J, 2011. 10: p. 208. 6.Doolan, D.L., C. Dobano, and J.K. Baird, Acquired immunity to malaria. Clin Microbiol Rev, 2009. 22(1): p. 13-36, Table of Contents. 7.Schwenk, R.J. and T.L. Richie, Protective immunity to pre-erythrocytic stage malaria. Trends Parasitol, 2011. 27(7): p. 306-14. 8.Ross, R., Some a priori pathometric equations. British medical journal, 1915. 1(2830): p. 546. 9.Mandal, S., R.R. Sarkar, and S. Sinha, Mathematical models of malaria--a review. Malar J, 2011. 10: p. 202. 10.Koella, J.C., On the use of mathematical models of malaria transmission. Acta Trop, 1991. 49(1): p. 1-25. 11.Dietz, K., L. Molineaux, and A. Thomas, A malaria model tested in the African savannah. Bull World Health Organ, 1974. 50(3-4): p. 347-57. 12.Chitnis, N., D. Hardy, and T. Smith, A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull Math Biol, 2012. 74(5): p. 1098-124. 13.Parham, P.E. and E. Michael, Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect, 2010. 118(5): p. 620-6. 14.White, L.J., et al., The role of simple mathematical models in malaria elimination strategy design. Malar J, 2009. 8: p. 212. 15.Tseng, L.F., et al., Rapid control of malaria by means of indoor residual spraying of alphacypermethrin in the Democratic Republic of Sao Tome and Principe. The American journal of tropical medicine and hygiene, 2008. 78(2): p. 248-250. 16.N''Guessan, R., et al., Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis, 2007. 13(2): p. 199-206. 17.Alonso, P.L., et al., A research agenda to underpin malaria eradication. PLoS Med, 2011. 8(1): p. e1000406. 18.Fillinger, U., B.G. Knols, and N. Becker, Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health, 2003. 8(1): p. 37-47. 19.Kleinschmidt, I., et al., Combining indoor residual spraying and insecticide-treated net interventions. Am J Trop Med Hyg, 2009. 81(3): p. 519-24. 20.Chitnis, N., et al., Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg, 2010. 83(2): p. 230-40. 21.Griffin, J.T., et al., Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med, 2010. 7(8). 22.Ferguson, H.M., et al., Ecology: a prerequisite for malaria elimination and eradication. PLoS Med, 2010. 7(8): p. e1000303.
Appendix references 1.White, L.J., et al., The role of simple mathematical models in malaria elimination strategy design. Malar J, 2009. 8: p. 212. 2.Filipe, J.A., et al., Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol, 2007. 3(12): p. e255. 3.Russell, T.L., et al., Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors. Proc Biol Sci, 2011. 278(1721): p. 3142-51. 4.Yang, G.-J., et al., Importance of endogenous feedback controlling the long-term abundance of tropical mosquito species. Population Ecology, 2008. 50(3): p. 293-305. 5.UN, D., World Population Prospects: The 2012 Revision. 2013, United Nations, Department of Economic and Social Affairs, Population Division New York, NY, USA. 6.Drakeley, C., et al., The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol, 2006. 22(9): p. 424-30. 7.Miller, M.J., Observations on the natural history of malaria in the semi-resistant West African. Trans R Soc Trop Med Hyg, 1958. 52(2): p. 152-68. 8.Maire, N., et al., A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. Am J Trop Med Hyg, 2006. 75(2 Suppl): p. 19-31. 9.Bayoh, M.N. and S.W. Lindsay, Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol, 2004. 18(2): p. 174-9. 10.Reyburn, H., et al., Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial. BMJ, 2007. 334(7590): p. 403. 11.N''Guessan, R., et al., Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis, 2007. 13(2): p. 199-206. 12.Griffin, J.T., et al., Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med, 2010. 7(8). 13.Who., World malaria report 2014. 2015: World Health Organization. 14.Sanitário, I.D.e., Sao Tome and Principe DHS, 2008-09 - Final Report. 2010. 15.WP, D., et al., WHO recommended insecticides for indoor residual spraying against malaria vectors. 16.Lindblade, K.A., et al., Evaluation of long-lasting insecticidal nets after 2 years of household use. Trop Med Int Health, 2005. 10(11): p. 1141-50.
|