跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子恩
研究生(外文):Huang, Tzu-En
論文名稱:以可見光與遠紅外光雷射退火技術 製作低熱預算鍺電晶體
論文名稱(外文):Visible and Far Infrared Laser Annealing-enabled Low Thermal Budget Ge Transistor
指導教授:謝嘉民
指導教授(外文):Shieh, Jia-Min
口試委員:張廖貴術郭浩中陳旻政
口試委員(外文):Kuei-Shu, Chang-LiaoKuo, Hao-chungChen, Min-Cheng
口試日期:2016-04-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:多晶鍺雷射退火技術無接面電晶體
外文關鍵詞:poly-GeLaser annealingJunctionless transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用感應耦合型電漿化學氣相沉積和奈秒綠光雷射尖峰退火技術,使之沉積奈晶鍺薄膜結晶成晶粒具500nm多晶鍺薄膜。利用化學機械研磨使雷射結晶後粗糙的表面磨平降低漏電流,使用感應耦合型電漿和原子層沉積系統可以使多晶鍺氧化出緻密的二氧化鍺薄膜並堆疊高介電質材料,遠紅外光雷射退火技術使源/汲極有效活化並形成超淺層接面,利用以上技術我們成功製造7奈米空乏模式多晶鍺電晶體元件,其PMOS載子遷移率可高達98 cm2/V-s、次臨界擺幅可低於0.235 V/Decade以及On/Off電流比可超過105;使用反向參雜並以遠紅外光雷射退火技術將P型半導體多晶鍺薄膜反轉成N型薄膜,此元件特性之次臨界擺幅可低於0.35 V/Decade以及On/Off電流比可超過103。同時利用化學機械研磨可將其表面平均粗糙度由52 Å降低為5Å,可獲得具超薄(25nm)平坦化之反轉模式多晶鍺電晶體的薄通道。此外,以遠紅外光雷射退火技術可將離子佈植之多晶鍺薄膜做退火,其電阻率小於50 mΩ-cm。結合此低熱預算技術及金屬閘極結構,已成功開發出具有高效能NMOS反轉模式多晶鍺電晶體,其次臨界擺幅可低於0.14 V/Decade以及On/Off電流比接近104。另一方面,在低熱預算及高元件性能之基礎下,導入具氧化層/氮化矽/氧化層/氧化層之金屬閘極非揮發性電荷捕捉記憶體,可於12V操作電壓下,快速進行(1ms)進行寫入及抹除,其記憶窗口分別為1.9V。因此具低熱預算之金屬閘極薄膜電晶體及非揮發性記憶體皆相當適合應用未來3D-ICs之垂直整合。
In this thesis, the green nanosecond spike laser crystallization (GNS-LC) was employed on nanocrystalline germanium film that was deposited by inductively-coupled plasma chemical vapor deposition system (ICPCVD) to recrystallize the poly-Ge film with large grain (500 nm). Chemical mechanical polishing (CMP) was applied on flat channel surface to reduce leakage current. ICPCVD was used to oxidation germanium surface and atom layer deposited system deposited high-K material. We also used counter doped and far-infrared laser annealing to reverse the N-type germanium film. After recrystallization, we have fabricated a high performance of depletion mode poly-Ge PMOS and NMOS field effect transistor. The PMOS FET exhibits high hole mobility of 98 cm2/V-s, low subthreshold swing of 0.235 V/Decade, and high on/off ratio of 105; The NMOS exhibits subthreshold swing of 0.35 V/Decade, and high on/off ratio of 103. Moreover, CMP was used to planarize and thin poly-Ge channel that reduces the mean roughness from 52 Å to 5 Å and achieve channel thickness to 25 nm. In addition, the GNS-LC reduces the resistivity to 0.05 mΩ-cm. Combining the thermal budget technologies and metal gate, We have fabricated a high performance of inversion mode poly-Ge FET that exhibits low subthreshold swing of 0.144 V/Decade, and high on/off ratio of 104. On the basis of low thermal budget technologies and high performance transistor, we introduce a multi-layer of oxide/HighK/nitride/oxide as nonvolatile memory. The MONAOS NVM exhibits a fast program/erase speed of 1 ms under 12V and the memory window is 1.9V. Therefore, the FET and NVMs with metal-gate fabricated by low thermal budget technologies are promising devices for the hetero-integration in 3D-ICs application.
摘要 I
Abstract III
致謝 V
目 錄 VII
圖目錄 X
表目錄 XIII
1. 第一章 導 論 1
1.1 前言 1
1.2 低溫技術之發展 1
1.3 鍺電晶體 4
1.4 鍺電晶體面臨的挑戰 5
1.5 研究動機 5
2. 第二章 原理介紹 7
2.1 多晶鍺薄膜製作 7
2.1.1 固相結晶 (Solid-phase crystallization,SPC) 8
2.1.2 金屬誘發結晶 (Metal-induced crystallization,MIC) 10
2.1.3 閃光燈誘發結晶(Flash lamp induced crystallization,FLIC) 12
2.1.4 雷射退火結晶 (Laser annealing crystallization) 14
2.2 汲/源極退火方法 16
2.2.1 快速熱退火 (Rapid thermal annealing,RTA) 16
2.2.2 微波退火 (Microwave annealing) 17
2.2.3 閃光燈退火 (Flash lamp annealing) 17
2.2.4 遠紅外光雷射退火 (Far-infrared laser annealing) 19
2.3 去費米能階釘札(Fermi level depinning) 21
2.3.1 介電層 22
2.3.2 鍺化鎳 23
2.4 反轉模式電晶體操作原理 24
2.5 空乏模式電晶體操作原理 26
3. 第三章 實驗儀器與元件製作 32
3.1 實驗儀器介紹 32
3.1.1 感應耦合型電漿化學氣相沉積系統 32
3.1.2 奈秒綠光尖峰雷射退火掃描系統 36
3.1.3 化學機械研磨 37
3.1.4 原子層沉積系統 39
3.1.5 遠紅外光雷射退火系統(FIR- LA) 40
3.2 雷射結晶多晶鍺場效電晶體 43
3.2.1 空乏模式多晶鍺電晶體 44
3.2.2 反轉模式多晶鍺電晶體 47
4. 第四章 實驗結果與分析 51
4.1 以雷射結晶製作多晶鍺薄膜 51
4.1.1 不同雷射瓦數對多晶鍺晶粒大小影響 53
4.1.2 不同雷射瓦數對多晶鍺薄膜品質之影響 54
4.1.3 薄通道之雷射結晶薄膜 57
4.2 空乏式多晶鍺場效電晶體 59
4.2.1 I-V 電性分析 59
4.2.2 不同通道寬度之雷射結晶多晶鍺空乏式電晶體 61
4.2.3 空乏式多晶鍺電晶體之載子遷移率 62
4.2.4 以反向摻雜製作空乏式多晶鍺電晶體 64
4.3 空乏式多晶鍺非揮發性電荷捕捉記憶體 65
4.3.1 多晶鍺記憶體之寫入抹除特性 65
4.3.2 多晶鍺記憶體電荷保存力 67
4.4 雷射結晶多晶鍺反轉式薄膜電晶體 67
4.4.1 調變同步摻雜流量之薄膜影響 67
4.4.2 多晶鍺/氧化鍺介面缺陷 69
4.4.3 雷射退火阻抗變化 70
4.4.4 I-V 電性分析 71
4.5 鍺化鎳 73
5. 第五章 結 論 75
5.1 結論 75
5.2 未來方向 76
Reference 77

[1] D. Y. Chen, W. C. Chiou, M. F. Chen, T. D. Wang, K. M. Ching, H. J. Tu, et al., "Enabling 3D-IC foundry technologies for 28 nm node and beyond: through-silicon-via integration with high throughput die-to-wafer stacking," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[2] J. C. Lin, W. C. Chiou, K. F. Yang, H. B. Chang, Y. C. Lin, E. B. Liao, et al., "High density 3D integration using CMOS foundry technologies for 28 nm node and beyond," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 2.1.1-2.1.4.
[3] H. Chaabouni, M. Rousseau, P. Leduc, A. Farcy, R. E. Farhane, A. Thuaire, et al., "Investigation on TSV impact on 65nm CMOS devices and circuits," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 35.1.1-35.1.4.
[4] T. Lo, M. F. Chen, S. B. Jan, W. C. Tsai, Y. C. Tseng, C. S. Lin, et al., "Thinning, stacking, and TSV proximity effects for Poly and High-K/Metal Gate CMOS devices in an advanced 3D integration process," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 33.4.1-33.4.4.
[5] S. Wong, A. El, P. Griffin, Y. Nishi, F. Pease, and J. Plummer, "Monolithic 3D Integrated Circuits," in VLSI Technology, Systems and Applications, 2007. VLSI-TSA 2007. International Symposium on, 2007, pp. 1-4.
[6] J. Soon-Moon, R. Youngseop, H. Taehong, P. Hanbyung, C. Chulsoon, L. Seungchul, et al., "Highly cost effective and high performance 65nm S3 (stacked single-crystal Si) SRAM technology with 25F2, 0.16um2 cell and doubly stacked SSTFT cell transistors for ultra high density and high speed applications," in VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on, 2005, pp. 220-221.
[7] P. Batude, M. Vinet, A. Pouydebasque, C. L. Royer, B. Previtali, C. Tabone, et al., "Advances in 3D CMOS sequential integration," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[8] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, et al., "Advances, challenges and opportunities in 3D CMOS sequential integration," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 7.3.1-7.3.4.
[9] Y. C. Lien, J. M. Shieh, W. H. Huang, W. S. Hsieh, C. H. Tu, C. Wang, et al., "3D Ferroelectric-like NVM/CMOS hybrid chip by sub-400 °C sequential layered integration," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 33.6.1-33.6.4.
[10] D. K. Schrodor, "Semiconductor Material and Device Chracterization", 2006.
[11] C. W. Chen, J. Y. Tzeng, C. T. Chung, H. P. Chien, C. H. Chien, and G. L. Luo, "High-Performance Germanium p- and n-MOSFETs With NiGe Source/Drain," IEEE Transactions on Electron Devices, vol. 61, pp. 2656-2661, 2014.
[12] K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, "Electrical properties of poly-Ge on glass substrate grown by two-step solid-phase crystallization," Solid-State Electronics, vol. 53, pp. 1159-1164, 2009.
[13] S. Kabuyanagi, T. Nishimura, K. Nagashio, and A. Toriumi, "Impacts of oxygen passivation on poly-crystalline germanium thin film transistor," Thin Solid Films, vol. 557, pp. 334-337, 2014.
[14] J.-H. Park, K. Kasahara, K. Hamaya, M. Miyao, and T. Sadoh, "High carrier mobility in orientation-controlled large-grain (≥ 50 μm) Ge directly formed on flexible plastic by nucleation-controlled gold-induced-crystallization," Applied Physics Letters, vol. 104, p. 252110, 2014.
[15] H. Higashi, K. Kasahara, K. Kudo, H. Okamoto, K. Moto, J.-H. Park, et al., "A pseudo-single-crystalline germanium film for flexible electronics," Applied Physics Letters, vol. 106, p. 041902, 2015.
[16] K. Kasahara, Y. Nagatomi, K. Yamamoto, H. Higashi, M. Nakano, S. Yamada, et al., "Electrical properties of pseudo-single-crystalline germanium thin-film-transistors fabricated on glass substrates," Applied Physics Letters, vol. 107, p. 142102, 2015.
[17] K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, "High-performance tri-gate poly-Ge junction-less p-and n-MOSFETs fabricated by flash lamp annealing process," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 16.6. 1-16.6. 4.
[18] Y. Kamata, M. Koike, E. Kurosawa, M. Kurosawa, H. Ota, O. Nakatsuka, et al., "Operation of inverter and ring oscillator of ultrathin-body poly-Ge CMOS," Applied Physics Express, vol. 7, p. 121302, 2014.
[19] M. Mulato, D. Toet, G. Aichmayr, P. Santos, and I. Chambouleyron, "Laser crystallization and structuring of amorphous germanium," Applied physics letters, vol. 70, pp. 3570-3572, 1997.
[20] K. Sakaike, S. Higashi, H. Murakami, and S. Miyazaki, "Crystallization of amorphous Ge films induced by semiconductor diode laser annealing," Thin Solid Films, vol. 516, pp. 3595-3600, 2008.
[21] C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, "Boron profile narrowing in laser-processed silicon after rapid thermal anneal," Journal of The Electrochemical Society, vol. 151, pp. G80-G83, 2004.
[22] Y.-L. Lu, Y.-J. Lee, and T.-S. Chao, "Simultaneous Activation and Crystallization by Low-Temperature Microwave Annealing for Improved Quality of Amorphous Silicon Thin-Film Transistors," ECS Solid State Letters, vol. 1, pp. P1-P3, 2012.
[23] C. Ortolland, "Overview of anneal technology for advanced logic CMOS," in Junction Technology (IWJT), 2011 11th International Workshop on, 2011, pp. 116-121.
[24] S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, et al., "Laser Annealing for USJ Formation in Silicon: Comparison of Simulation and Experiment," Electron Devices, IEEE Transactions on, vol. 61, pp. 696-701, 2014.
[25] T. Nishimura, K. Kita, and A. Toriumi, "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface," Applied Physics Letters, vol. 91, p. 123123, 2007.
[26] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. Evangelou, "Fermi-level pinning and charge neutrality level in germanium," Applied physics letters, vol. 89, pp. 252110-252110, 2006.
[27] D. Connelly, C. Faulkner, D. Grupp, and J. Harris, "A new route to zero-barrier metal source/drain MOSFETs," Nanotechnology, IEEE Transactions on, vol. 3, pp. 98-104, 2004.
[28] R. T. Tung, "Recent advances in Schottky barrier concepts," Materials Science and Engineering: R: Reports, vol. 35, pp. 1-138, 2001.
[29] T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, et al., "Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI," IEEE Transactions on Electron Devices, vol. 42, pp. 915-922, 1995.
[30] Q. Zhang, N. Wu, T. Osipowicz, L. K. Bera, and C. Zhu, "Formation and thermal stability of nickel germanide on germanium substrate," Japanese journal of applied physics, vol. 44, p. L1389, 2005.
[31] 蕭宏, 半導體製程技術導論: 學銘圖書有限公司, 2007.
[32] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, et al., "Nanowire transistors without junctions," Nature nanotechnology, vol. 5, pp. 225-229, 2010.
[33] Y. Taur, X. Liang, W. Wang, and H. Lu, "A continuous, analytic drain-current model for DG MOSFETs," Electron Device Letters, IEEE, vol. 25, pp. 107-109, 2004.
[34] T. Holtij, M. Schwarz, A. Kloes, and B. Iñíguez, "2D analytical potential modeling of junctionless DG MOSFETs in subthreshold region including proposal for calculating the threshold voltage," in Ultimate Integration on Silicon (ULIS), 2012 13th International Conference on, 2012, pp. 81-84.
[35] Y. Taur, H.-P. Chen, W. Wang, S.-H. Lo, and C. Wann, "On–off charge–voltage characteristics and dopant number fluctuation effects in junctionless double-gate MOSFETs," Electron Devices, IEEE Transactions on, vol. 59, pp. 863-866, 2012.
[36] J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, "Electric-field-enhanced crystallization of amorphous silicon," Nature, vol. 395, pp. 481-483, 1998.
[37] P. R. i Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drévillon, and I. French, "Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique," Journal of Applied Physics, vol. 86, pp. 7079-7082, 1999.
[38] T. Nagahara, K. Fujimoto, N. Kohno, Y. Kashiwagi, and H. Kakinoki, "In-situ chemically cleaning poly-Si growth at low temperature," Japanese journal of applied physics, vol. 31, p. 4555, 1992.
[39] I.-C. Cheng and S. Wagner, "Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150 C," Applied physics letters, vol. 80, pp. 440-442, 2002.
[40] D. D. Zhao, C. H. Lee, T. Nishimura, K. Nagashio, G. A. Cheng, and A. Toriumi, "Experimental and Analytical Characterization of Dual-Gated Germanium Junctionless p-Channel Metal–Oxide–Semiconductor Field-Effect Transistors," Japanese Journal of Applied Physics, vol. 51, p. 04DA03, 2012.
[41] C.-W. Chen, C.-T. Chung, J.-Y. Tzeng, P.-S. Chang, G.-L. Luo, and C.-H. Chien, "Body-tied germanium tri-gate junctionless PMOSFET with in-situ boron doped channel," Electron Device Letters, IEEE, vol. 35, pp. 12-14, 2014.
[42] I.-H. Wong, Y.-T. Chen, S.-H. Huang, W.-H. Tu, Y.-S. Chen, and C. W. Liu, "Junctionless Gate-All-Around pFETs Using In-situ Boron-Doped Ge Channel on Si," Nanotechnology, IEEE Transactions on, vol. 14, pp. 878-882, 2015.
[43] C.-C. Tsai, Y.-J. Lee, K.-Y. Chiang, J.-L. Wang, I.-C. Lee, H.-H. Chen, et al., "Polycrystalline silicon thin-film transistors with location-controlled crystal grains fabricated by excimer laser crystallization," Applied Physics Letters, vol. 91, p. 201903, 2007.
[44] W. C.-Y. Ma, T.-Y. Chiang, C.-R. Yeh, T.-S. Chao, and T.-F. Lei, "Channel film thickness effect of low-temperature polycrystalline-silicon thin-film transistors," Electron Devices, IEEE Transactions on, vol. 58, pp. 1268-1272, 2011.
[45] C. Suryanarayana and M. G. Norton, X-ray diffraction: a practical approach: Springer Science & Business Media, 2013.
[46] J.-P. Colinge, "Junctionless transistors," in 2012 IEEE International Meeting for Future of Electron Devices, Kansai.
[47] A. Dargys and J. Kundrotas, "Handbook on physical properties of Ge, Si, GaAs and InP," Vilnius: Science and Encyclopedia Publishers, 1994., 1994.
[48] K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo, "Improved split CV method for effective mobility extraction in sub-0.1-μm Si MOSFETs," Electron Device Letters, IEEE, vol. 25, pp. 583-585, 2004.
[49] S. Barraud, M. Berthomé, R. Coquand, M. Cassé, T. Ernst, M.-P. Samson, et al., "Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm," Electron Device Letters, IEEE, vol. 33, pp. 1225-1227, 2012.
[50] W. Bai, N. Lu, J. Liu, A. Ramirez, D. Kwong, D. Wristers, et al., "Ge MOS characteristics with CVD HfO/sub 2/gate dielectrics and TaN gate electrode," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, 2003, pp. 121-122.
[51] J. Kim, S. W. Bedell, and D. K. Sadana, "Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus," Applied Physics Letters, vol. 98, p. 082112, 2011.
[52] R. Milazzo, E. Napolitani, G. Impellizzeri, G. Fisicaro, S. Boninelli, M. Cuscunà, et al., "N-type doping of Ge by As implantation and excimer laser annealing," Journal of Applied Physics, vol. 115, p. 053501, 2014.
[53] C. Wang, C. Li, G. Lin, W. Lu, J. Wei, W. Huang, et al., "Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing," Electron Devices, IEEE Transactions on, vol. 61, pp. 3060-3065, 2014.
[54] 施敏, 半導體元件物理學: 交大出版社, 2008.
[55] E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R. Van Meirhaeghe, et al., "Deep level transient spectroscopy study of nickel-germanide Schottky barriers on n-type germanium," Applied physics letters, vol. 88, p. 3506, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top