|
[1] D. Y. Chen, W. C. Chiou, M. F. Chen, T. D. Wang, K. M. Ching, H. J. Tu, et al., "Enabling 3D-IC foundry technologies for 28 nm node and beyond: through-silicon-via integration with high throughput die-to-wafer stacking," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4. [2] J. C. Lin, W. C. Chiou, K. F. Yang, H. B. Chang, Y. C. Lin, E. B. Liao, et al., "High density 3D integration using CMOS foundry technologies for 28 nm node and beyond," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 2.1.1-2.1.4. [3] H. Chaabouni, M. Rousseau, P. Leduc, A. Farcy, R. E. Farhane, A. Thuaire, et al., "Investigation on TSV impact on 65nm CMOS devices and circuits," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 35.1.1-35.1.4. [4] T. Lo, M. F. Chen, S. B. Jan, W. C. Tsai, Y. C. Tseng, C. S. Lin, et al., "Thinning, stacking, and TSV proximity effects for Poly and High-K/Metal Gate CMOS devices in an advanced 3D integration process," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 33.4.1-33.4.4. [5] S. Wong, A. El, P. Griffin, Y. Nishi, F. Pease, and J. Plummer, "Monolithic 3D Integrated Circuits," in VLSI Technology, Systems and Applications, 2007. VLSI-TSA 2007. International Symposium on, 2007, pp. 1-4. [6] J. Soon-Moon, R. Youngseop, H. Taehong, P. Hanbyung, C. Chulsoon, L. Seungchul, et al., "Highly cost effective and high performance 65nm S3 (stacked single-crystal Si) SRAM technology with 25F2, 0.16um2 cell and doubly stacked SSTFT cell transistors for ultra high density and high speed applications," in VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on, 2005, pp. 220-221. [7] P. Batude, M. Vinet, A. Pouydebasque, C. L. Royer, B. Previtali, C. Tabone, et al., "Advances in 3D CMOS sequential integration," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4. [8] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, et al., "Advances, challenges and opportunities in 3D CMOS sequential integration," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 7.3.1-7.3.4. [9] Y. C. Lien, J. M. Shieh, W. H. Huang, W. S. Hsieh, C. H. Tu, C. Wang, et al., "3D Ferroelectric-like NVM/CMOS hybrid chip by sub-400 °C sequential layered integration," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 33.6.1-33.6.4. [10] D. K. Schrodor, "Semiconductor Material and Device Chracterization", 2006. [11] C. W. Chen, J. Y. Tzeng, C. T. Chung, H. P. Chien, C. H. Chien, and G. L. Luo, "High-Performance Germanium p- and n-MOSFETs With NiGe Source/Drain," IEEE Transactions on Electron Devices, vol. 61, pp. 2656-2661, 2014. [12] K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, "Electrical properties of poly-Ge on glass substrate grown by two-step solid-phase crystallization," Solid-State Electronics, vol. 53, pp. 1159-1164, 2009. [13] S. Kabuyanagi, T. Nishimura, K. Nagashio, and A. Toriumi, "Impacts of oxygen passivation on poly-crystalline germanium thin film transistor," Thin Solid Films, vol. 557, pp. 334-337, 2014. [14] J.-H. Park, K. Kasahara, K. Hamaya, M. Miyao, and T. Sadoh, "High carrier mobility in orientation-controlled large-grain (≥ 50 μm) Ge directly formed on flexible plastic by nucleation-controlled gold-induced-crystallization," Applied Physics Letters, vol. 104, p. 252110, 2014. [15] H. Higashi, K. Kasahara, K. Kudo, H. Okamoto, K. Moto, J.-H. Park, et al., "A pseudo-single-crystalline germanium film for flexible electronics," Applied Physics Letters, vol. 106, p. 041902, 2015. [16] K. Kasahara, Y. Nagatomi, K. Yamamoto, H. Higashi, M. Nakano, S. Yamada, et al., "Electrical properties of pseudo-single-crystalline germanium thin-film-transistors fabricated on glass substrates," Applied Physics Letters, vol. 107, p. 142102, 2015. [17] K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, "High-performance tri-gate poly-Ge junction-less p-and n-MOSFETs fabricated by flash lamp annealing process," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 16.6. 1-16.6. 4. [18] Y. Kamata, M. Koike, E. Kurosawa, M. Kurosawa, H. Ota, O. Nakatsuka, et al., "Operation of inverter and ring oscillator of ultrathin-body poly-Ge CMOS," Applied Physics Express, vol. 7, p. 121302, 2014. [19] M. Mulato, D. Toet, G. Aichmayr, P. Santos, and I. Chambouleyron, "Laser crystallization and structuring of amorphous germanium," Applied physics letters, vol. 70, pp. 3570-3572, 1997. [20] K. Sakaike, S. Higashi, H. Murakami, and S. Miyazaki, "Crystallization of amorphous Ge films induced by semiconductor diode laser annealing," Thin Solid Films, vol. 516, pp. 3595-3600, 2008. [21] C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, "Boron profile narrowing in laser-processed silicon after rapid thermal anneal," Journal of The Electrochemical Society, vol. 151, pp. G80-G83, 2004. [22] Y.-L. Lu, Y.-J. Lee, and T.-S. Chao, "Simultaneous Activation and Crystallization by Low-Temperature Microwave Annealing for Improved Quality of Amorphous Silicon Thin-Film Transistors," ECS Solid State Letters, vol. 1, pp. P1-P3, 2012. [23] C. Ortolland, "Overview of anneal technology for advanced logic CMOS," in Junction Technology (IWJT), 2011 11th International Workshop on, 2011, pp. 116-121. [24] S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, et al., "Laser Annealing for USJ Formation in Silicon: Comparison of Simulation and Experiment," Electron Devices, IEEE Transactions on, vol. 61, pp. 696-701, 2014. [25] T. Nishimura, K. Kita, and A. Toriumi, "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface," Applied Physics Letters, vol. 91, p. 123123, 2007. [26] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. Evangelou, "Fermi-level pinning and charge neutrality level in germanium," Applied physics letters, vol. 89, pp. 252110-252110, 2006. [27] D. Connelly, C. Faulkner, D. Grupp, and J. Harris, "A new route to zero-barrier metal source/drain MOSFETs," Nanotechnology, IEEE Transactions on, vol. 3, pp. 98-104, 2004. [28] R. T. Tung, "Recent advances in Schottky barrier concepts," Materials Science and Engineering: R: Reports, vol. 35, pp. 1-138, 2001. [29] T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, et al., "Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI," IEEE Transactions on Electron Devices, vol. 42, pp. 915-922, 1995. [30] Q. Zhang, N. Wu, T. Osipowicz, L. K. Bera, and C. Zhu, "Formation and thermal stability of nickel germanide on germanium substrate," Japanese journal of applied physics, vol. 44, p. L1389, 2005. [31] 蕭宏, 半導體製程技術導論: 學銘圖書有限公司, 2007. [32] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, et al., "Nanowire transistors without junctions," Nature nanotechnology, vol. 5, pp. 225-229, 2010. [33] Y. Taur, X. Liang, W. Wang, and H. Lu, "A continuous, analytic drain-current model for DG MOSFETs," Electron Device Letters, IEEE, vol. 25, pp. 107-109, 2004. [34] T. Holtij, M. Schwarz, A. Kloes, and B. Iñíguez, "2D analytical potential modeling of junctionless DG MOSFETs in subthreshold region including proposal for calculating the threshold voltage," in Ultimate Integration on Silicon (ULIS), 2012 13th International Conference on, 2012, pp. 81-84. [35] Y. Taur, H.-P. Chen, W. Wang, S.-H. Lo, and C. Wann, "On–off charge–voltage characteristics and dopant number fluctuation effects in junctionless double-gate MOSFETs," Electron Devices, IEEE Transactions on, vol. 59, pp. 863-866, 2012. [36] J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, "Electric-field-enhanced crystallization of amorphous silicon," Nature, vol. 395, pp. 481-483, 1998. [37] P. R. i Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drévillon, and I. French, "Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique," Journal of Applied Physics, vol. 86, pp. 7079-7082, 1999. [38] T. Nagahara, K. Fujimoto, N. Kohno, Y. Kashiwagi, and H. Kakinoki, "In-situ chemically cleaning poly-Si growth at low temperature," Japanese journal of applied physics, vol. 31, p. 4555, 1992. [39] I.-C. Cheng and S. Wagner, "Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150 C," Applied physics letters, vol. 80, pp. 440-442, 2002. [40] D. D. Zhao, C. H. Lee, T. Nishimura, K. Nagashio, G. A. Cheng, and A. Toriumi, "Experimental and Analytical Characterization of Dual-Gated Germanium Junctionless p-Channel Metal–Oxide–Semiconductor Field-Effect Transistors," Japanese Journal of Applied Physics, vol. 51, p. 04DA03, 2012. [41] C.-W. Chen, C.-T. Chung, J.-Y. Tzeng, P.-S. Chang, G.-L. Luo, and C.-H. Chien, "Body-tied germanium tri-gate junctionless PMOSFET with in-situ boron doped channel," Electron Device Letters, IEEE, vol. 35, pp. 12-14, 2014. [42] I.-H. Wong, Y.-T. Chen, S.-H. Huang, W.-H. Tu, Y.-S. Chen, and C. W. Liu, "Junctionless Gate-All-Around pFETs Using In-situ Boron-Doped Ge Channel on Si," Nanotechnology, IEEE Transactions on, vol. 14, pp. 878-882, 2015. [43] C.-C. Tsai, Y.-J. Lee, K.-Y. Chiang, J.-L. Wang, I.-C. Lee, H.-H. Chen, et al., "Polycrystalline silicon thin-film transistors with location-controlled crystal grains fabricated by excimer laser crystallization," Applied Physics Letters, vol. 91, p. 201903, 2007. [44] W. C.-Y. Ma, T.-Y. Chiang, C.-R. Yeh, T.-S. Chao, and T.-F. Lei, "Channel film thickness effect of low-temperature polycrystalline-silicon thin-film transistors," Electron Devices, IEEE Transactions on, vol. 58, pp. 1268-1272, 2011. [45] C. Suryanarayana and M. G. Norton, X-ray diffraction: a practical approach: Springer Science & Business Media, 2013. [46] J.-P. Colinge, "Junctionless transistors," in 2012 IEEE International Meeting for Future of Electron Devices, Kansai. [47] A. Dargys and J. Kundrotas, "Handbook on physical properties of Ge, Si, GaAs and InP," Vilnius: Science and Encyclopedia Publishers, 1994., 1994. [48] K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo, "Improved split CV method for effective mobility extraction in sub-0.1-μm Si MOSFETs," Electron Device Letters, IEEE, vol. 25, pp. 583-585, 2004. [49] S. Barraud, M. Berthomé, R. Coquand, M. Cassé, T. Ernst, M.-P. Samson, et al., "Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm," Electron Device Letters, IEEE, vol. 33, pp. 1225-1227, 2012. [50] W. Bai, N. Lu, J. Liu, A. Ramirez, D. Kwong, D. Wristers, et al., "Ge MOS characteristics with CVD HfO/sub 2/gate dielectrics and TaN gate electrode," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, 2003, pp. 121-122. [51] J. Kim, S. W. Bedell, and D. K. Sadana, "Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus," Applied Physics Letters, vol. 98, p. 082112, 2011. [52] R. Milazzo, E. Napolitani, G. Impellizzeri, G. Fisicaro, S. Boninelli, M. Cuscunà, et al., "N-type doping of Ge by As implantation and excimer laser annealing," Journal of Applied Physics, vol. 115, p. 053501, 2014. [53] C. Wang, C. Li, G. Lin, W. Lu, J. Wei, W. Huang, et al., "Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing," Electron Devices, IEEE Transactions on, vol. 61, pp. 3060-3065, 2014. [54] 施敏, 半導體元件物理學: 交大出版社, 2008. [55] E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R. Van Meirhaeghe, et al., "Deep level transient spectroscopy study of nickel-germanide Schottky barriers on n-type germanium," Applied physics letters, vol. 88, p. 3506, 2006.
|