跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉國樑
論文名稱:原油污染土壤去除方式之研究
論文名稱(外文):Cleanup technology of crude oil from a contaminated soil
指導教授:吳瑞賢吳瑞賢引用關係
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:88
語文別:中文
論文頁數:119
中文關鍵詞:電動力營養基去除率微生物處理法加溫脫附法
相關次數:
  • 被引用被引用:2
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石油及其產品為能源主要供給及人類衣食住行、娛樂等各類活動所需之主要來源,但也是一種有害污染物,常因人為疏忽,造成各種土壤或地下水污染事件。最具代表性之污染處理法分為抽氣(曝氣)法或加溫脫附法,微生物處理法,及電動力處理等三種。
某儲槽區,因為原油漏出,污染到地下土壤,為防止油品滲透到地下水層,先將受污染土壤挖出,堆積在附近,俟研擬適合方案 ,再加以處理。本污染土壤曾委托專責機構,用通氣(曝氣)方式進行試驗,利用直徑20公分之反應器,內裝高10公分污染土壤,由底部通入空氣,保持土壤濕度18%,測試時間約半年,總碳氫化合物由9544mg/kg降到5406mg/kg,去除效率為43%,效果並不明顯。
經反覆探討,針對此三種常用方法進行仔細評估,決定以微生物處理法及電動力處理法為主要試驗方式,又為兼顧此兩種方法之特點,另外進行此兩種處理方法之混合試驗,且試驗土壤污染濃度有高、低兩類,期望藉多種不同方法,獲取可靠數據,作為將來類似污染處理參考。
藉添加氮及營養物,並加入雙氧水生產氧氣,促進土壤天然生長細菌之活性,使細菌藉副新陳代謝作用,分解碳氫化合物成二氧化碳及水,此種微生物處理復育方式頗受重視。許多研究紛紛報導在有氧及厭氧狀態下,以微生物分解受碳氫化合物污染的泥土樣品,主要結論是微生物處理可持污染土壤中的碳氫化合物降低到輕微含量。
電泳、電滲透、電解及離子交換(氧化與還原)是四種已知的物理及化學程序,但在臺灣很少將它們用在危害廢棄地區之復育工作,這四種程序的綜合效應被稱為現地電動力處理,藉110v直流電,產生l.lVolts/cm電壓,形成電場,可將土壤中之水份及污染物帶到負極,再藉正負極互換方式,讓在正極產生的氫氧根自由基將污染之碳氫化合物氧化成二氧化碳及水,而在試驗期間,負極pH值為ll.0,正極為2.5,可證明氧化還原作用如預測般進行。
現有文獻僅用原則性介紹各類實驗室處理案例,且污染物多屬較輕石油產品,對現地處理之介紹不多,各項關鍵性細節亦少描述。
本試驗是在現地進行,且是首次針對原油污染處理之個案,利用污染現場附近相同的土地,挖掘長12公尺,寬5公尺,深l公尺的實驗坑,再將污染土壤堆置內,測試電動力法及微生物處理法之污染去除功效。
經試驗顯示,兩種方法均可將含碳氫化合物398mg/kg之污染物在三周內去除90%以上,而兩種方法混合在一起之試驗,也可有效地將大部分高濃度(15459mg/kg)碳氫化合物去除,此種混合處理可能是一項最佳的選擇,也是一項較合宜的環境復原方式,試驗成功之依據在於掌握各項操作細節,試驗可貴之處則是以現地之實際環境代替實驗室可控制之模擬環境,這些試驗之步驟及收集之數據,可直接應用在類似污染事件之處理方案,這也是本項試驗之主要目的。
電動力試驗強調下列觀點:
1.電動力作用之電解及氧化還原作用,促使帶電離子、污染溶液及水流向負極,每日將連接到正負極之電流互換,可讓在酸性正極產生的氫氧根自由基,將原積聚在負極,再因互換改積聚在正極的污染碳氫化合物分解,故合適的土壤含水量及酸性土壤是必要的條件。
2.為保證試驗的正確性,污染土壤必先混合均勻,再送到測試坑,測試坑四周及底部之土壤務必分析確認未受到二次污染。
3.電動力作用之使用電壓110Volts ,電壓梯度為l.1Volts/cm,電流保持在13A,日夜觀察均在穩定值,顯示土壤含水量維持在穩定狀態下,確保了電動力作用之進行。
4.本項試驗之主要參數為土壤含水量,電壓及電流,正負極距離,土壤保持酸性使氫氧根自由基容易產生,酸腐蝕電極鐵棒氧化成鐵離子,作為生產氫氧根自由基的觸媒,正負極互換,電極鐵棒兼做液體輸送管等。
5.以往電動力作用從未應用在原油的污染土壤試驗,首次直接在現地將實際受原油污染的土壤加以試驗,取代實驗室之方式是一項新嘗試。
土壤電動力法之關鍵工作如下:
1﹒電動力設計
(1)電場設計正負極排列
(2)直流電流與電壓訂定
(3)觸媒添加或氫氧根自由基之產生系統
2﹒電動力理論
(1)電動力太久,土壤逐漸由正極延伸到負極,變鹼性,失去功效。
(2)土壤保持酸性,可幫助氫氧根自由基生成。
(3)電極鐵棒腐蝕之鐵離子Fe3+是電動力作用下生成氫氧根自由基之觸媒。
(4)在正極產生氫氧根自由基,是強氧化劑,可分解碳氫化合物。
(5)污染的碳氫化合物積聚在負極。
(6)正、負極間之互換頻率控制,以達到最佳功效。
微生物處理法添加碳酸胺、磷酸鈉、葡萄糖等營養物及雙氧水為促使微生物數量增加之主要因素,微生物分解試驗顯示了如下意義:
l.土壤中天然生長的特定生物體,如Pseudomonas,Candida,可利用微生物培育方式增加數量,促使加速分解碳氫化合物。
2.微生物分解速率與實驗室測試相同,依所添加的營養物數量、類型及雙氧水量而定,雙氧水注入土壤時立即與周圍土壤中礦物質相作用產生氧氣,效果較佳。
3.微生物最佳成長溫度是37oC,而現地試驗微生物成長之溫度(15∼l7oC)比實驗室值(35oC)低,故現地試驗之分解速率較低。
4.在現地及實驗室之土壤,pH值均為7∼8,適合微生物復育期間微生物生長所需。但現場整治是否適用微生物處理法,不僅要了解污染物質被分解程度,尚需看場址之地質及化學特性而定,例如土壤種類、地質岩性、地下水之化性,若是多種有機物污染時,微生物不可能將此污染物完全分解,有些污染物可能在厭氧環境下方能被分解,因此整治計劃面臨許多難題。
微生物處理之關鍵工作如下:
l﹒營養物添加
(1)營養物之選取及比例數量。
(2)營養物平均放置到土壤。
(3)利用雙氧水取代空氣及有效均勻注入到土壤。
2﹒生物復育之理論
(1)養份輸送均勻,使微生物成長。
(2)雙氧水注入,立即產生水及氧氣,是一種有效之氧氣供給。
(3)水份補充,維持微生物生長。
(4)注入雙氧水,會與Fe+2起作用,產生氫氧根自由基,方可去除碳氫化合物。
H2O2 + Fe+2 → OH* + OH- (6-1)
(5)留意相關分解系統:污染濃度、養份、水份、酸度、鐵粉、溫度、透水性、電導度、硬度及氧氣需求量。
微生物分解配合電動力作用之總結如下:
1.微生物分解配合電動力作用是一種成功的去除碳氫化合物的試驗,縮短了去除時間。
2.若處理低濃度的土壤污染物,微生物分解及電動力法之個別處理速度均快,但若對高污染土壤,兩者配合之處理方式較佳。
3.在電動力及微生物分解作用中所產生之酸性腐敗味道包含氧、氫、二氧化碳及可能的甲烷氣。
利用生物工程作為現場復育之障礙可能是政府規章,因為生物工程必須保證此項技術無害人類或環境, 因此, 利用天然生長之微生物較為合適, 自 1970年以來, 現地之微生物復育已走過了一段路程,在90年代,此技術之突破必須考慮與其他方式結合,以大幅度降低處理費用及增強處理效果。在微生物復育逐漸廣泛使用情況下,找尋綜合的多項技術之系統,將不易處理之污染物去除是對未來的一種挑戰及承諾。
本論文敘述的復育模式及現地測試方案對土壤復育有很大幫助,本試驗結果可用在評估去除石油碳氫化合物污染之可行性。試驗證實,在選取一種可靠的環境復原方式, 微生物分解配合電動力技術可能是一項極佳的替代方案。
A Spill of crude oil at a refinery tankage area contaminated the subsurface soil. The first experiment was once made by putting contaminated soils in a reactor of 20cm in diameter (soil height: 10cm) with air ventilated on the bottom and the moisture content in soil kept to about 18%. This experiment lasted for 175 days, with the result that the TPH(Diesel) content was reduced from 9544mg/kg to 5406mg/kg. The removal rate of 43.4% is not effective. After carefully study and evaluate, biological and electrokinetic process are applied. Results are presented from a field experiment that documented the in-situ cleanup process of crude oil. The enhanced bioremediation was accomplished by stimulating the growth of indigenous bacteria, which transform hydrocarbons by co-metabolic process to carbon dioxide and water. Biostimulation of the test pit was successfully achieved by addition of ammonia, bicarbonate, trisodium phosphate, glucose and hydrogen peroxide within three weeks.
An electro-kinetic method which combined effects of electrophoresis, electro-osmosis, electrolysis and ion exchange, was also applied. Like biological process, the same lot of 12m ×5m ×1m was used. A DC power of 110V was applied. Testing results indicated that electro-kinetic induced a hydraulic gradient that helped most of the lighter hydrocarbons in crude oil be removed from the soil within three weeks. The pH values of 2.5 at anode and 11 at cathode were measured and indicated that the reduction and oxidation process occurred as expected.
In order to fine the better solution to remove the contaminated soil, the electro-kinetic process coupled with biodegrdation was also applied to different concentration of contaminated soil. These results indicated that similar removal efficiency achieved within two weeks and the combined technique may be a better process to clean up the contaminated soil which contained high concentration of hydrocarbon.
It is not easy to find the cleanup technologies in detailed procedure from the published paper , and it seldom happens and applies biological and electrokinetic process to remove crude oil from a contaminated soil. Instead of laboratory experiment, the parameters and results of in-situ test is easy to apply to the on site treatment and remediation. This is the main purpose of this research.
封面
中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
符號說明
第一章 前言
1.1 研究動機
1.2 研究內容與預期效益
第二章 文獻回顧
2.1 污染鑑定處理技術
2.2 土壤電動力處理
2.3 微生物處理法
第三章 土壤分析
3.1 地形介紹
3.2 污染物之分析方法
3.3 土壤污染狀況
第四章 研究方法
4.1 電動力處理法
4.2 微生物處理法
4.3 微生物法配合電動力作用
第五章 結果與討論
5.1 電動力作用
5.2 微生物處理法
5.3 微生物分解配合電動力作用
第六章 結論與建議
6.1 結論
6.2 建議
參考文獻
1.Adamson, L. G., Chilingar, G. V., Beeson,C. M., and Armstrong R. A., 1966, "Electrokinetic dewatering, consolidation and stabilization of soils," Engineering Geology, Vol. l, pp. 291-304.
2. Benefield, Larrg D., 1982, Process Chemistry for Water and Wastewater Treatment, Englewood Cliffs New Jersy Prentice-Hall.
3. Bruch, J.C., Lewis, R.W., 1973, "Electro-osmosis and the contamination of underground fluids," J. of Environmental planning and Pollution Control, Vol. 1, pp. 1-7.
4. Casagrande, L., 1947, "The Application of Electro-osmosis to Practical Problems in Foundations and Earthworks," Building Research Technical Paper, Stationery Office, London.
5. Casagrande, L., Wade, N., Wakely, M., Loughney, R., 1981, "Electro-osmosis Projects, British Columbia, Canada," Soil Mechanics and Foundation Engineering Tenth International Conference, pp. 607- 610 .
6. Casagrande, L., 1948, "Electro-osmosis in soils," Geotechnique, Vol. l, pp. 159-176.
7. Dale, S., 1997, "Electro-osmosis Technology for Soil Remediation Laboratory resolve, field trial and Economic modeling," Journal of Hazardous materials, pp. 81-91 .
8. Du, J.S., 1994, "Kinetics of the Oxidative Degradation of Formadehyde with Electrogenerated Hydrogen Peroxide," National Science Council. NCS 83-0410-EH029-003
9. Erlich, G. G., Goerlitz, D. F., Godsy, E. M. and Hult, M. F., 1982, "Degradation of phenolic contaminants in ground water by anaerobic bacteria: St. Louis Park, Minnesota," Ground Water, Vol. 20, pp. 703-710.
10. Freundlich, H., 1926, Colloid and Capillary Chemistry, London.
11. Gaudy, A.F., Gaudy, E.T., 1980, "Microbiology for environmental scientists and engineers," New York, McGraw-Hill.
12. Gersevanov, N.M., Polshin, D.E., 1948, Theoretical principles of soil mechanics and their practical application ,Moscow.
13. Haran, B. S., Branko, N. P. and Zheng, G. H., 1997, “Mathematical modeling of hexavalent chromium decontamination from Low surface Charges Soils," Journal of Hazardous materials, pp. 93-107
14. Helmholtz, H.L.F., 1879, "Studies of electric boundary layers," Annals Physik Wiedemann, Leipzig, Germany, Vo1.7, pp.337-382 .
15. Hutchins, S.R., Weweel, G.W., Kovacs, D.A., Smith G.A., 1991, “Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions," Environ. Sci. Tech., Vol. 25, pp. 68-76.
16. Hutchins, S.R., Downs, W.C., Wilson, J.T., Smith, G.B., Kovacs, D.A., Fine, D.D., Douglass, R.H., Hendrix, D.J., 1991, "Effect of Nitrate Addition on Biorestoration of Fuel-Contaminated Aquifer Field Demonstration," Ground Water, Vol. 29, pp. 571-580.
17. Lee, M.D., Thomas, J.M., Borden, R.C., Bedient, P.B., Wilson, J.T., Ward, C.H., 1988, "Biorestoration of aquifers contaminated with organic compounds," Crit. Rev. Environ. Control, Vol. 18, pp. 29-89.
18. Lewis, R.W., Garner, R.W., 1972, "A finite element solution of coupled electro-kinetic and hydrodynamic flow in porous media," International Journal for Numerical Methods in Engineering, Vol. 5, pp. 41-55.
19. Lewis, R.W., Humpheson, C., 1973, "Numerical analysis of electro-osmotic flow in soils," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 99, pp. 603-616.
20. Loo, W.W., Wang, I.S, 1994, "Remediation of Groundwater Aquifer by In-Situ Electrolysis and Electro-Osmosis", AWD Technologies, San Francisco, California.
21. Lvin, I. E., 1965, "New Equation for Electro-Osmotic Flow and Implications for Porous Media, " Highway Research Record, 44th Annual Meeting of Highway Research Board, Washington DC., Jan. 11-15.
22. Maclean, D.J., Rolfe, D.W., 1946, "A Laboratory Investigation of Electro-osmosis in Soils, " The Philosophical Magazine, Vo1.37, pp.275.
23. Maureen, C. L., Richard, A . B., 1994, "Bioremediation: Optimizing results," Chemical Engineering, pp108-116.
24. McGuire, M.L., 1978, Paper presented at Ozone technology Symposium, International Ozone Institute, Los Angeles, Calif.
25. Melvin, I. E., 1968, "Pore Pressures, Consolidation, and Electrokinetics, " Journal of the Soil Mechanics And Foundation Division, ASCE, Vol. 94, pp. 898-921.
26. Oden, J.T., Ziendiewica, O.C., Gallagher, R.H., Taylor, C., Editors, 1974 "Finite element methods in flow problems," (UAH Press) January, pp. 772.
27. Oel, H.J., 1955, "Zur Theorie der Electrokinetischen Ersheinungen," Z. fur Phys. Chem., Neue Folge, Vol. 5, pp. 32-51.
28. Olphen, V.H., 1963, "An Introduction to Clay Colloid Chemistry," N. Y., Interscience.
29. Quincke, G., 1861, "Ueber die fortfuhrung materieller the ilchen durch stromende electricitat," Annals Physik, Vo1.113, pp.513-598.
30. Reuss, F. F., 1808, Memoires de la Societe Imperiale des Naturolists de Moscow, Moscow, Vo1.2, pp.327-337.
31. Richard, W. L., 1975, "Construction Dewatering with Electro-osmosis," Joint AEG-ASCE Symposium Practical Construction Dewatering, pp. 1-16.
32. Roland, W. L., 1975, "Applications of Electro-Osmosis to Ground Water Flow Problems, " Ground Water, Vol. 13, pp.484-491.
33. Rzhnaitzin, B.A., 1957, "Eletro-osmotic Processes in Clayey Soils and Dewatering during Excavations," Proc. 4th. Int. Conf. on Soil Mech. and Foundation Eng. ,Vol. 1, pp. 62-67.
34. Schmid, G., 1950; 1951; 1952, Series of papers in Z. Electrochemistry , Vol. 54, pp. 424 ; Vol. 53, pp. 229-684 ; Vo1.56, pp. 35-181.
35. Small, C., 1996, "Innovative LUST Cleanup Technologies: Overcoming The Barriers Underground Storage Tank Management," EPA of Executive Yuan, Taiwan, pp.2-17.
36. Smoluchowski, M. V., 1921, "Handbuch der Electrizitat und des Magnetismus," Leipzig, J. A. Barth, Vol. 2, pp. 366.
37. Thomas, J.M., Lee, M.D., Bedient, P.B., Borden, R.C., Canter, I.W., Ward, C.H., 1987, "Leaking underground storage tanks: remediation with emphasis on in-situ biorestoration," RSKERI, Publication EPA600-287-008.
38. Tiedje, J. M., 1988, "Ecology of denitrification and dissimilator nitrate reduction to ammonium," In: Biology of Avtaerobic Microorganisms. A. J. B. Zehnder (ed), John Wiley and sons, New York. pp. 179-244.
39. Van Doren, E.P., 1987, "Electro-Osmotic Remediation of Contamined Groundwater," M.S. Thesis, Civil Engineering Dept. University of Lowell .
40.Voice, T.C., Kolb, B., 1994, "Comparison of European and American Techniques for the Analysis of Volatile Organic Compounds in Environmental Matrices," J. of Chrom. Sci, Vol.
32, pp. 306-311
41. Waiter, W. L., Wang, I.S., 1994, "Remediation of Groundwater Aquifer by In-Situ Electrolysis and Electro-Osmosis," AWD Technologies, San Jose California.
42. Wan, T. Y., Mitchell, J K, 1975, “New Apparatus for consolidation by Electro-Osmosis, " Journal of Geology Technical Engineering Division, ASCE, Vol. 101, pp. 503-507.
43. Wang, I-Sen, 1997, "Feasibility evaluation for soil and groundwater remediation using bench-scale testing," Final report of short term advisor, Exploring Research Institute of Chinese Petroleum Corporation.
44. Wang, W., Chen, C.S., 1996, Final report of Biodegradation of oil from a contaminated soil, Chinese Petroleum Corporation pp.3.2.2-3.2.45
45.Wilson J.L., Conrad, S.H., 1984, "Is physical displacement residual hydrocarbons a realistic possibility in aquifer restoration?"Proceedings, Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water Proventiort, Detection, and Restoration, Houson, T.X. pp.274-298.
46.Wilson, J. T., McNabb, J. F., Cochran, J. W., Wang, T. H., Tomson, M. B. and Bedient, P. B., 1985, "Influence of microbial adaptation on the fate of organic pollutants in ground water," Evtvirons. Toxicol. Chem., Vol. 4, pp. 721-726.
47. Wilson, J. T., Leach, L.E., Henson, M., Jones, J.N., 1986, "In situ biorestoration as a ground water remediation technique," Ground Water Monitor, Vol. 6, pp. 56-64.
48. Winsauer, W. O., McCardell, W. M., 1953, "Ionic Double-Layer Conductivity in Reservoir Rock," Petroleum Transactions, AIME, Vo1.198, pp. 129-134.
49. Zienkiewicz, O.C., Parekh, C.J., 1970, "Transient field problems: two dimensional and three dimensional analysis by isoparametric finite elements, " International Journal for Numerical Methods in Engineering, Vol. 2, pp. 61-71.
50.王奕森, 1994, ”微生物處理法之簡介與應用(一)(二),” 港灣報導季刊, NO.29,30
51.陳清涼, 黃冬梨, 方炳勳 1997, “土壤及水中汽柴油污染物快速篩選分析,” 專題研究報告,中油公司嘉義煉制研究所, 案號︰9260-1。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top