跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳永哲
研究生(外文):Yung Che Chen
論文名稱:探討表觀基因所調控的免疫監控低下在肺部疾病扮演的角色
論文名稱(外文):Investigating the role of epigenetic change-mediated compromised immune surveillance in lung disease
指導教授:林孟志林孟志引用關係蕭長春
指導教授(外文):M. C. LinC. C. Hsiao
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:253
中文關鍵詞:肺結核第二型類鐸受器去氧核醣核酸甲基化肺癌S100A15
外文關鍵詞:pulmonary tuberculosistoll-like receptor 2DNA methylationlung cancerS100A15
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是要探討表觀基因(表徵遺傳學; epigenetics)所調控的免疫監控低下,是否會影響兩種肺部疾病的發生–肺結核和肺癌。這兩種疾病的發生都是因為個體的免疫系統無法正常執行其功能,無法把結核菌或肺泡腫瘤細胞清除所致。表觀基因改變,例如去氧核醣核酸甲基化,在調控因應環境刺激(缺氧、毒物、感染)的免疫反應和基因表現上扮演關鍵的角色。因此,我們尋求能作為這兩種肺部疾病之早期診斷或預測治療反應的表觀基因所調控的免疫監控低下相關的生物標誌。第二型類鐸受器是人體對抗結核菌的固有免疫的主要調控者。在本研究第一部份,我們首先運用直接定序法,在184位肺結核及184位健康人的群體中,發現第二型類鐸受器基因多型性單倍型(-16934A/-15607G/-196 to -174 insertion /1350T)與活動性肺結核的罹病性有關。而且,肺結核病人帶有1350 CC、或GT repeats同質短對偶、或-196 to -174同質缺失基因型者,其血液自然殺手細胞數較高。接著,我們運用焦磷酸定序法、反轉錄多聚合脢反應法、流式細胞儀,檢測另外99位痰培養陽性肺結核病人並與77位健康人比較,發現其第二型類鐸受器基因啟動子去氧核醣核酸甲基化上升、第二型類鐸受器基因表現降低、血液單核球第二型類鐸受器蛋白質表現降低、血液自然殺手細胞第二型類鐸受器蛋白質表現上升、而且血清甲型腫瘤壞死因子/丙型干擾素濃度上升。大部份的這些生物標誌在六個月抗結核藥物治療後回到正常。在第二部份,我們首先分析30位非小細胞肺癌病人和20位健康人,週邊血液單核細胞基因表現全貌,發現末期肺癌病人的整體免疫反應趨向第二型幫助者細胞反應,尤其是第四型細胞介質傳導途徑隨著腫瘤進展和化學治療有明顯改變。反轉錄多聚合脢反應法確認了四個在肺癌病人表現上升(S100A15, DOK2)或下降(TLR7, TOP1MT)的基因,及六個在化學治療後表現上升(TLR7, CRISP3, TOP1MT)或下降(S100A15, DOK2, IL2RG)的基因。進一步在石蠟包埋的肺腫瘤作免疫組織化學分析,確認出S100A15的核染色在第四期病人比第三期明顯,而且在治療反應不佳的比治療反應好的明顯。接著,我們試圖找出S100A15基因啟動子去氧核醣核酸甲基化模式是否會影響該分子促進肺癌遠處轉移的作用。綜合起來看,本研究的結果讓我們對表觀基因所調控的免疫監控低下在這兩種肺部疾病的發生、診斷和治療上所扮演的角色有進一步的瞭解。

The purpose of this thesis research is to investigate epigenetic changes-mediated compromised immune surveillance that may affect the development of two common lung diseases, pulmonary tuberculosis (TB) and lung cancer. Both diseases develop when the individual’s immune system can not execute its normal function to eradicate either M.tb or tumor cell. Epigenetic changes, such as DNA methylation, play an essential role in regulating immune responses and gene expressions to environmental stimuli, such as hypoxia, toxin, and infection. Thus, we sough to identify epigenetic biomarkers for early diagnoses and predicting outcomes of both lung diseases. In the first part of this study, we found initially that one genetic haplotype (-16934A/-15607G/-196 to -174 insertion /1350T) of the toll-lke receptor 2 (TLR2) gene was linked to the susceptibility to active pulmonary TB disease in a cohort of 184 patients with pulmonary TB and 184 healthy controls, using direct sequencing. TB patients with the 1350 CC genotype, homozygous short alleles for GT repeats, or -196 to -174 deletion/deletion had higher blood natural killer (NK) cell counts. Then, we found higher DNA methylation levels over five CpG sites (3, 7, 9, 13, and 18) of the TLR2 promoter region, lower TLR2 gene expression, lower TLR2 protein expression on blood monocyte, higher TLR2 proein expression on blood NK cell, and higher serum TNF-α/IFN-γ levels in another cohort of 99 sputum culture positive pulmonary TB patients as compared to that in 77 healthy subjects, using pyrosequencing, RT-PCR, flowcytometry, and ELISA methods. Most of these biomarkers were reversed to normal after 6-month anti-TB treatment. In the second part, we initially analyzed whole genome microarray gene expression profiles of peripheral blood mononuclear cells from 30 patients with newly-diagnosed advanced stage non-small cell lung cancer (NSCLC), and 20 age-, sex-, and co-morbidity-matched healthy controls.We found the IL4 pathway significantly enriched in both tumor progression and chemotherapy signatures in patients with advanced NSCLC. Quantitative RT-PCR for the four up-regulated (S100A15, DOK2) and down-regulated (TLR7, TOP1MT) genes in the patients, and the six upregulated (TLR7, CRISP3, TOP1MT) and down-regulated (S100A15, DOK2, IL2RG) genes after chemotherapy confirmed the validity of the microarray results. Immunohistochemical analysis of the paraffin-embedded lung cancer tissues identified strong S100A15 nuclear staining not only in stage IV NSCLC as compared to stage IIIB NSCLC, but also in patients with stable or progressive disease as compared to those with a partial response. Then, we try to correlate aberrant DNA methylation patterns of the S100A15 promoter region with distant metastasis of lung adenocarcinoma. Taken together, results of this thesis research allow a better understanding of the effect of compromised immune surveillance on the development, diagnoses, and outcomes of both lung diseses through epigenetic regulations.

Table of Contents
指導教授推薦書 .……………………………………...……………..…
口試委員會審定書 ………………………………………………..........
誌 謝.... iii
中文摘要 iv
Abstract… vi
Table of Contents viii
DIRECTORY OF FIGURES xviii
DIRECTORY OF TABLES xxi
ABBREVIATION xxiv
DISCLAIMER xxvi
CHAPTER Ⅰ INTRODUCTION 1
1.1 Background 1
1.1.1 Toll-like receptor 2 (TLR2) genetic variants and its down-stream immune responses in patients with pulmonary tuberculosis (TB) 1
1.1.1.1 TLR2 genetic variants and pulmonary TB 1
1.1.1.2 Blood T cell counts and treatment response of
pulmonary TB 3
1.1.1.3 Serum IP-10 and IL-17 in patients with pulmonary
TB 4
1.1.2 Aberrant DNA methylation of the TLR2 promoter and pulmonary tuberculosis 6
1.1.3 Compromised immune surveillance in patients with non-small cell lung cancer (NSCLC) 7
1.1.4 Aberrant DNA methylation of the S100A15 promoter in
lung cancer 9
1.2 Purpose 10
1.2.1 To determine if TLR2 genetic polymorphisms, its down-stream cytokines, and T cell response are
associated with susceptibility or clinical phenotypes of pulmonary TB. 10
1.2.1.1 TLR2 genetic variants and pulmonary TB 11
1.2.1.2 Blood T cell counts and treatment response of
pulmonary TB 11
1.2.1.3 SerumIP-10 and IL-17 in patients with pulmonary
TB 12
1.2.2 To determine if TLR2 promoter methylation statuses are associated with the development and clinical phenotypes
of pulmonary TB 12
1.2.3 To determine which immunogenic biomarkers may serve
as predictors for treatment responses or prognosis of
NSCLC 13
1.2.4 To determine if S100A15 and DNA methylation statuses
of its promoter region are involved in the metastasis
potential of lung cancer 14
CHAPTER Ⅱ EXPERIMENTAL SETUP 16
2.1 Association studies of single nucleotide polymorphism (SNP)
of the TLR2 gene and its down-stream immune response in patients with active pulmonary TB 16
2.1.1 Subjects 16
2.1.1.1 TLR2 genetic variants and pulmonary TB 16
2.1.1.2 Blood T cell counts and treatment response of
pulmonary TB 17
2.1.1.3 Serum IP-10 and IL-17 in patients with pulmonary
TB 18
2.1.2 Methods 19
2.1.2.1 Molecular techniques and genotyping of TLR2 19
2.1.2.2 Determination of blood lymphocyte phenotypes 21
2.1.2.3 Processing of sputum samples for AFB smear and mycobacterial culture, CXR grading, and treatment course 21
2.1.2.5 Measurements of IP-10, IL-17, and CRP in the serum 23
2.2 Aberrant TLR2 promoter methylation and pulmonary TB 24
2.2.1 Subjects 24
2.2.2 Methods 25
2.2.2.1 Measurement of DNA methylation levels over TLR2 promoter region by bisulfite pyrosequencing method 25
2.2.2.2 Measurement of TLR2 mRNA gene expressions of peripheral blood leukocytes by quantitative realtime reverse transcription (RT)-PCR method 26
2.2.2.3 Measurement of TLR2 protein expressions on the cell surface of peripheral blood CD14Dmonocytes, CD3DCD56D NK T cell, CD3DCD56L T cell, and CD3LCD56DNK cells by flow cytometry 27
2.2.2.4 Measurement of TLR2 total protein expression of leukocytes by Western blot 28
2.2.3 statistical analysis 28
2.3 Compromised immune surveillance and lung cancer 29
2.3.1 Subjects 29
2.3.2 Methods 31
2.3.2.1 Processes of RNA Isolation and cRNA Synthesis 31
2.3.2.2 Microarray Data Analysis 32
2.3.2.3 Verification of Gene Expressions using TaqMan Quantification Real-time Reverse Transcriptase polymerase Chain Reaction (RT-PCR) 34
2.3.2.4 Immunohistochemistry (IHC) Staining of Lung
Cancer Tissues for S100A15 35
2.3.2.5 Evaluation of Immunohistochemical Staining for S100A15 36
2.3.3 Statistical analysis 36
2.4 Aberrant S100A15 promoter methylation and lung cancer 37
2.4.1 Subjects and materials 37
2.4.2 Methods 38
2.4.3 Statistical analysis 46
CHAPTER Ⅲ EXPERIMENT RESULTS 47
3.1 Association study of single nucleotide polymorphism (SNP)
of the TLR2 gene and its down-stream immune responses in patients with pulmonary TB 47
3.1.1 Demographic data of the subjects 47
3.1.1.1 TLR2 genetic variants and pulmonary TB 47
3.1.1.2 Blood T cell count and treatment response of
pulmonary TB 47
3.1.1.3 Serum IP-10 and IL-17 in patients with pulmonary TB 48
3.1.2 TLR2 genetic variants contribute to pulmonary TB 48
3.1.2.1 Allele and genotype frequencies in TB patients and healthy subjects 48
3.1.2.2 Association of TLR2 haplotype with pulmonary TB 49
3.1.2.3 Associations of the -196 to -174 Del/Del and 1350 CC genotype with TB phenotypes 50
3.1.2.4 Association between the TLR2 genotypes and blood absolute NK cell counts in TB patients 50
3.1.3 Blood T cell counts can predict treatment response of pulmonary TB 51
3.1.3.1 Association of blood absolute counts of lymphocyte subsets with treatment response 51
3.1.3.2 Multivariate analysis models and predictive accuracy 52
3.1.3.3 Long-term Outcomes 53
3.1.3.4 Drug-resistant TB 54
3.1.4 IP-10 and Il-17 can predict relapse risk and mortality 55
3.1.4.1 Higher serum IP-10 levels at month 2 in the HA group 55
3.1.4.2 Correlations of serum IP-10/hsCRP levels at diagnosis with disease severity 56
3.1.4.3 Lower serum IL-17 levels at month 2 in non-survivors 56
3.2 Aberrant TLR2 promoter methylation and pulmonary TB 57
3.2.1 Demographic data of the subjects 57
3.2.2 Aberrant TLR2 promoter methylation, and TLR2 gene/protein expressions in patients with active
pulmonary TB…. 58
3.2.2.1 Comparisons of TLR2 promoter methylation levels, TLR2 gene expression, and TLR2 protein expressions between TB patients and healthy subjects 58
3.2.2.2 Comparisons of TLR2 promoter DNA methylation
levels, TLR2 gene expression, and TLR2 protein expressions among various pulmonary TB phenotypes 60
3.2.2.3 Changes in TLR2 promoter DNA methylation levels, TLR2 gene expression, and TLR2 protein expressions after 6-month anti-TB treatment 61
3.3 Compromised immune surveillance and lung cancer 62
3.3.1 Demographic data of the subjects 62
3.3.2 Peripheral Immune Cell Gene Expression Changes in Advanced Non-Small Cell Lung Cancer Patients Treated with First Linen Combination Chemotherapy 62
3.3.2.1 Differentially Expressed Genes in PBMC Associated with Tumor Progression 62
3.3.2.2 Differentially Expressed Genes in PBMC after Combination Chemotherapy with CDDP and GEM in Cancer Patients 63
3.3.2.3 Interleukin 4 (IL4) Pathway 64
3.3.2.4 Distinct Expression Patterns Across Tumor Stages and Histopathological Subtypes 66
3.3.2.5 Confirmation of the Microarray Results using TaqMan Real-time RT-PCR 67
3.3.2.6 S100A15 Protein Expressions of Lung Cancer Tissues by IHC Staining for the Differentially Expressed Genes Associated with Tumor Progression and/or Chemotherapy Signatures 68
3.4 Aberrant S100A15 promoter methylation and lung cancer 70
3.4.1 Demographic data of the subjects 70
3.4.2 S100A15 nuclear accumulation is associated with high metastasis potential of lung adeonocarcinoma in clinical samples 70
3.4.3 S100A15 expression is increased in lung cancer cell lines with high metastasis potential 71
3.4.4 Aberrant DNA methylation of S100A15 promoter 71
CHAPTER Ⅳ DISCUSSION AND CONCLUSIONS 72
4.1 TLR2 genetic polymorphisms and its down-stream immune responses in patients with pulmonary TB 72
4.1.1 TLR2 genetic variants and pulmonary TB 72
4.1.1.1 Association of TLR2 haplotype with susceptibility to
TB 72
4.1.1.2 Association of TLR2 genetic variants with blood NK
cell counts 74
4.1.1.3 Conclusions for TLR2 genetic variants and
pulmonary TB 76
4.1.2 Blood absolute T cell counts can predict treatment
response of pulmonary TB 77
4.1.2.1 Independent factors for slow-responders afeter
2-month anti-TB treatment 77
4.1.2.2 Risk factors for relapsed pulmonary TB 78
4.1.2.3 Conclusions for blood T cell counts and treatment response 81
4.1.3 Serum IP-10 and IL-17 can predict relapse risk or
long-term outcomes after anti-TB treatment 82
4.1.3.1 Serum IP-10 can predict high risks of relapse after complete anti-TB treatment 82
4.1.3.2 Serum IL-17 can predict long-term mortality 84
4.1.3.3 Conclusions for serum IP-10/IL-17 and pulmonary TB 85
4.2 Aberrant TLR2 promoter methylation and pulmonary TB 86
4.2.1 TLR2 promoter hypermethylation is associated active pulmonary TB disease 86
4.2.2 Down-regulated TLR2 on monocyte but up-regulated
TLR2 on NK cell in patients with active pulmonary TB 87
4.2.3 Limitations 89
4.2.4 Conclusions 90
4.3 Compromised immune surveillance in patients with NSCLC 91
4.3.1 Immunosuppression with skewing to Th2-dominant
status in patients with advanced NSCLC 91
4.3.2 Increased S100A15 expression with tumor progression returned to normal after chemotherapy 94
4.3.3 Compromised Innate Immunity in advanced NSCLC
patients 96
4.3.4 Limitations 97
4.3.5 Conclusions 99
4.4 Aberrant S100A15 promoter methylation and NSCLC 99
4.4.1 Increased S100 A15 nuclear accumulation may predict a high metastasis potential of lung adenocarcinoma 99
4.4.2 Increased DNA methylation levels of 5 CpG sites in the S100A15 promoter region in the 3 lung cancer cell lines
with high metastasis properties 100
CHAPTER Ⅴ FUTURE PERSPECTIVE 101
Figures… 102
Tables….. 142
References 162
APPENDIX 192
Approval of human study (Institutional Review Board Approval) 193
Publication list 198
Research grants 203
CURRICULUM VITAE 204
Supplementary Tables of microarray gene expression profiles in
the lung cancer study 206
Table S1. Primer sequences and probe product number for assay quantitative real-time polymerase chain reactions used in
the present study. 206
Table S2. Selected microarray gene expression significantly
altered in peripheral blood mononuclear cells (PBMC) of advanced stage non-small cell lung cancer patients
compared with healthy subjects. 207
Table S3. Selected microarray gene expression significantly
altered in PBMC of advanced-stage non-small cell lung cancer patients after chemotherapy with cisplatin and gemcitabine compared with that before chemotherapy. 211
Table S4. Selected microarray gene expression significantly up-regulated in PBMC of advanced stage non-small cell
lung cancer patients with different stages and histopathologies in association with 1.5 fold change identified by unsupervised hierarchical clustering
analysis 216
Table S5. Raw data of immunohistochemical staining results
for S100A15. 221
Supplementary Figure 1. 222
Supplementary Figure 2. 223
口試委員審查意見回覆 224


DIRECTORY OF FIGURES
Fig. 1. Flow chart to show classification profiles.........................103
Fig. 2. Flow chart to show classification profiles........................104
Fig. 3. Diagrams showing pyrosequencing design, pyrograms, and protein blots of toll-like receptor 2...........105
Fig. 4. Linkage disequilibrium plots.......................................107
Fig. 5. Homozygous TLR2 -100 GT repeat polymorphism and absolute natural killer (NK) cell counts measured at diagnosis.................................108
Fig. 6. Homozygous TLR2 -196 to -174 Ins>Del polymorphism and absolute natural killer (NK) cell counts measured at diagnosis...................................109
Fig. 7. Homozygous TLR2 1350 T>C polymorphism and absolute natural killer (NK) cell counts measured at diagnosis..............110
Fig. 8. Relationships between blood absolute counts of T cell subsets, and 2-month response to anti-tuberculosis treatment in the study groups....................112
Fig. 9. Predictive accuracy of the T cell counts. ......................113
Fig. 10. Kaplan–Meier survival curves for 64 TB patients with separate lines according to age, and response to 2-month anti-tuberculosis treatment. ..........114
Fig. 11. Relationships between blood levels of IP-10, IL-17, and hsCRP, and risk of caviation and a positive sputum smear/culture after two months of anti-tuberculosis treatment in the study groups.........................................116
Fig. 12. Predictive accuracy of the serum IP-10 levels measured at month 2...117
Fig. 13. Relationships between blood levels of IP-10 and hsCRP at diagnosis, and disease activity. .................................................118
Fig. 14. Relationship between blood IL-17 levels measured at month 2 and all-cause mortality in the study population..........119
Fig. 15. Comparison of DNA methylation levels in the TLR2 gene promoter region..........120
Fig. 16. TLR2 gene/protein expressions of immune cells of the blood, and serum cytokine levels in pulmonary TB patients versus healthy subjects (HS)............121
Fig. 17. TLR2 promoter methylation levels, and TLR2 protein expressions on the blood immune cells in pulmonary TB patients of different clinical phenotypes..........123
Fig. 18. TLR2 promoter DNA methylation changes in the 25 TB patients before and after anti-TB treatment. The error bars show the 95% CI and mean...............125
Fig. 19. TLR2 gene/protein expression changes in the 25 TB patients before and after anti-TB treatment. .............................126
Fig. 20. The IL4 pathway was enriched in both tumor progression and chemotherapy signatures. ...................................................128
Fig. 21. Hierarchical clustering of PBMC samples from patients with advanced stage lung cancer and healthy controls. ............130
Fig. 22. Confirmation of microarray results with TaqMan real-time RT-PCR.........132
Fig. 23. Immunohistochemistry (IHC) staining for S100A15................134
Fig. 24. Survival curves based on tumor stages. ..............................137
Fig. 25. Nuclear S100A15 IHC staining in the 69 patients with lung adenocarcinoma...138
Fig. 26. S100A15 expressions in lung cancer cell lines.........................139
Fig.27. DNA methylation levels of the 5 CpG sites in the S100A15 promoter region with respect to the 4 lung cancer cell lines. ...140
Fig.28. Representative pyrograms of the 5 CpG sites in the S100A15 promoter region. ........................................................................141


DIRECTORY OF TABLES
Table 1. Biological characteristics of the genotyped TLR2 polymorphisms and the primers and conditions used for PCR .......................................143
Table 2. PCR amplification, pyrosequencing, and primers used in measuring DNA methylation and mRNA levels of the TLR2 gene ....................................144
Table 3. Characteristics of Study Participants...........................145
Table 4. Comparisons of clinical baseline characteristics between fast responders and slow responders to 2-month anti-TB treatment............................146
Table 5. Comparison of treatment medication and duration between fast responders and slow responders groups of patients with pulmonary tuberculosis .................148
Table 6. Comparison of the characteristics between high association (HA) and medium/low association (MA/LA) groups ............149
Table 7. Comparisons of outcomes between high risk (HA) and medium to low risk (MR/LR) groups with pulmonary tuberculosis ..............................150
Table 8. Allele frequencies of GT microsatellite repeat dinucleotides
polymorphism (a) in cases and control subjects.....................151
Table 9. Genotype and allele frequencies of TLR 2 gene polymorphisms in TB patients and control subjects* ............152
Table 10. Estimation of TLR2 haplotype frequencies in the study population by using the expectation-maximization algorithm with the Haploview software ...........153
Table 11. Association of TLR2 -196 to -174 deletion/deletion and 1350 CC genotypes with TB phenotypes. Odds ratio (OR) and 95% confidence interval (CI) are reported when the common allele (insertion or T) is dominant. ..........................154
Table 12. Cox proportional hazard model to analyze predictors for mortality in all the patients with pulmonary tuberculosis ......155
Table 13. Demographic and clinical characteristics of culture positive pulmonary tuberculosis (TB) patients and healthy subjects ........................156
Table 14. Comparison of methylation levels over the 20 CpG sites in the toll-like receptor 2 promoter region between pulmonary TB patients and healthy subjects....157
Table 15. Baseline and clinical characteristics of the 30 advanced stage non-small cell lung cancer patients and 20 matched healthy controls.......................158
Table 16. IL4 pathway-associated genes that were differentially expressed with tumor progression and / or chemotherapy.....159
Table 17. Use of Cox proportional hazard model to analyze predictors for 3-year overall mortality in the 26 non-small cell lung cancer patients ................160
Table 18. Immunohistochemistry staining of lung cancer tissues compared with normal lung tissues published in the Human Protein Atlas website* for the differentially expressed genes identified in this study associated with tumor progression and/or chemotherapy signatures * www.proteinatlas.com .................................161

1. Alan A, Richard JU. Toll-like receptors in the induction of the innate immune response: Nature 2000; 406(6797):782-787.
2. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163(7):3920-3927.
3. López M, Sly LM, Luu Y, Young D, Cooper H, Reiner NE. The 19-kDa mycobacterium tuberculosis protein induces macrophage apoptosis through toll-like receptor 2. J Immunol 2003; 170(5):2409-2416.
4. Fricke I, Mitchell D, Mittelstädt, Lehan N, Heine H, Goldmann T, Böhle A, Brandau S. Mycobacteria induce IFN-g production in human dendritic cells via triggering of TLR2. J Immunol 2006; 176(9): 5173-5182.
5. Basu S, Pathk SK, Banerjee A, Pathak S, Bhattacharyya A, Yang Z, Talarico S, Kundu M, Basu J. Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by toll-like receptor 2- dependent release of tumor necrosis factor-a. J Biol Chem 2007; 282(2):1039-1050.
6. Taxereau J, Chiche JD, Taylor W, Choukroun G, Comba B, Mira JP. The importance of toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 2005; 41(Suppl 7):S408-15.
7. Haehnel V, Schwarzfischer L, Fenton MJ, Rehli M. Transcriptional regulation of the human toll-like receptor 2 gene in monocytes and macrophages. J Immunol 2002; 168(11):5629-5637.
8. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, Yegin O. The Arg753Gln polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004; 23(2):219-223.
9. Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS, Holland SM. The association between microsatellite polymorphisms in intron II of the human toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 2006; 7(2):150-155.
10. Eder W, Klimecki W, Yu L, von Mutius E, Reidler J, Braun-Fahrländer C, Nowak D, Martinez FD, ALEX Study Team. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 2004; 113(3):482-488.
11. Tahara T, Arisawa T, Wang F, Shibata T, Nakamura M, Sakata M, Hirata I, Nakano H. Toll-like receptor 2 -196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci 2007; 98(11):1790-1794.
12. The International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437(7063):1299-1320.
13. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21(2):263-265.
14. Thuong NT, Hawn TR, Thwaites GE, Chau TT, Lan NT, Quy HT, Hieu NT, Aderem A, Hien TT, Farrar JJ, Dunstan SJ. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun 2007; 8(5):422-428.
15. Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A. Differential selective expression of TLR3 in dendritic cells. J Immunol 2000; 164(11):5998-6004.
16. Prabha C, Rajashree P, Sulochana DD: TLR2 and TLR4 expression on the immune cells of tuberculous pleural fluid. Immunol Lett 2008; 117(1):26-34.
17. Schierloh P, Yokobori N, Alemán M, Landoni V, Geffner L, Musella RM, Castagnino J, Baldini M, Abbate E, de la Barrera SS, Sasiain MC. Mycobacterium tuberculosis-induced gamma interferon production by natural killer cells requires cross talk with antigen-presenting cells involving toll-like receptor 2 and 4 and the mannose receptor in tuberculous pleurisy. Infect Immun 2007; 75(11):5325-5337.
18. Sutmuller RPM, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006; 116(2):485-494.
19. Ganley-Leal LM, Liu X, Wetzler LM. Toll-like receptor 2 mediated human B cell differentiation. Clin Immunol 2006; 120(3):272-284.
20. Zierski M, Bek E, Long MW and Snider DE. Short course (6-month) cooperative tuberculosis study in Poland: results 30 months after completion of treatment, Am Rev Respir Dis 1981; 124: 249–251.
21. Mitchison DA. Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months, Am Rev Respir Dis 1993; 147: 1062–1063.
22. Benator D, Bhattacharya M, Bozeman L, Burman W, Cantazaro A, Chaisson R, Gordin F, Horsburgh CR, Horton J, Khan A, Lahart C, Metchock B, Pachucki C, Stanton L, Vernon A, Villarino ME, Wang YC, Weiner M and Weis S. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomized clinical trial, Lancet 2002; 360: 528–534.
23. Perrin FM, Lipman MC, McHugh TD and Gillespie SH. Biomarkers of treatment response in clinical trials of novel antituberculosis agents, Lancet Infect Dis 2007; 7: 481–490.
24. Walzl G, Ronacher K, Djoba Siawaya JF and Dockrell HM: Biomarkers for TB treatment response: challenges and future strategies, J Infect 2008; 57: 103–109.
25. Mason CM and Ali J: Immunity against mycobacteria, Semin Respir Crit Care Med 2004; 25: 53–61.
26. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J and Chan J: Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension, Cell Microbiol 2006; 8: 218–232.
27. Vani J, Shaila MS, Rao MK, Krishnaswamy UM, Kaveri SV and Bayry J: B lymphocytes from patients with tuberculosis exhibit hampered antigen-specific responses with concomitant overexpression of interleukin-8. J Infect Dis 2009, 200:481–482; author reply 482–484.
28. Singhal M, Banavalikar JN, Sharma S and Saha K: Peripheral blood T lymphocyte subpopulations in patients with tuberculosis and the effect of chemotherapy, Tubercle 1989, 70: 171–178.
29. Jones BE, Oo MM, Taikwel EK, Qian D, Kumar A, Maslow ER and Barnes PF: CD4 cell counts in human immunodeficiency virus-negative patients with tuberculosis, Clin Infect Dis 1997, 24: 988–991.
30. Barcelos W, Martins-Filho OA, Guimaraes TM, Oliveira MH, Spindola-de-Miranda S, Carvalho BN and Toledo Vde P: Peripheral blood mononuclear cells immunophenotyping in pulmonary tuberculosis patients before and after treatment, Microbiol Immunol 2006, 50: 597–605.
31. Deveci F, Akbulut HH, Celik I, Muzand F. Ilhan MH: Lymphocyte subpopulations in pulmonary tuberculosis patients, Mediators Inflamm 2006, 2006: 1–6.
32. Al Majid FM and Abba AA. Immunophenotypic characterization of peripheral T lymphocytes in pulmonary tuberculosis, J Postgrad Med 2008, 54: 7–11.
33. Aktas E, Ciftci F, Bilgic S, Sezer O, Bozkanat E, Deniz O, Citici U and Deniz D. Peripheral immune response in pulmonary tuberculosis, Scand J Immuno 2009, l 70: 300–308.
34. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN et al., American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis, Am J Respir Crit Care Med 2003;167: 603–662.
35. Zierski M, Bek E, Long MW and Snider DE. Jr. Shortcourse (6-month) cooperative tuberculosis study in Poland: results 30 months after completion of treatment, Am Rev Respir Dis1981; 124: 249–251.
36. Cohn DL, Catlin BJ, Peterson KL, Judson FN and Sbarbaro JA. A 62-dose, 6-month therapy for pulmonary and extrapulmonary tuberculosis. A twice-weekly, directly observed, and cost-effective regimen, Ann Intern Med 1990; 112: 407–415.
37. Mitchison DA. Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months, Am Rev Respir Dis 1993; 147: 1062–1063.
38. Benator D, Bhattacharya M, Bozeman L, Burman W, Cantazaro A, Chaisson R et al. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIVnegative patients: a randomised clinical trial, Lancet 2002; 360: 528–534.
39. Singla R, Srinath D, Gupta S, Visalakshi P, Khalid UK, Singla N et al. Risk factors for new pulmonary tuberculosis patients failing treatment under the Revised National Tuberculosis Control Programme, India, Int J Tuberc Lung Dis 2009; 13: 521–526.
40. Chang KC, Leung CC, Yew WW, Chan SL and Tam CM. Dosing schedules of 6-month regimens and relapse for pulmonary tuberculosis, Am J Respir Crit Care Med 2006; 174: 1153–1158.
41. Chang KC, Leung CC, Yew WW, Ho SC and Tam CM. A nested case-control study on treatment-related risk factors for early relapse of tuberculosis, Am J Respir Crit Care Med 2004;170: 1124–1130.
42. Hong Kong Chest service/Tuberculosis Research Centre, Madras/British Medical Research Council, A controlled clinical comparison of 6 and 8 months of antituberculosis chemotherapy in the treatment of patients with silicotuberculosis in Hong Kong, Am Rev Respir Dis 1991;143: 262–267.
43. Bock NN, Sterling TR, Hamilton CD, Pachucki C, Wang YC, Conwell DS, et al. Aprospective, randomized, doubleblind study of the tolerability of rifapentine 600, 900, and 1,200 mg plus isoniazid in the continuation phase of tuberculosis treatment, Am J Respir Crit Care Med 2002;165: 1526–1530.
44. Perrin FM, Lipman MC, McHugh TD and Gillespie SH. Biomarkers of treatment response in clinical trials of novel antituberculosis agents, Lancet Infect Dis 2007; 7: 481–490.
45. Wallis RS, Doherty TM, Onyebujoh P, Vahedi M, Laang H, Olesen O, et al. Biomarkers for tuberculosis disease activity, cure, and relapse, Lancet Infect Dis 2009;9: 162–172.
46. Farber J., Mig and IP-10, CXC chemokines that target lymphocytes, J Leukoc Biol 1997; 61: 246–257.
47. Gangur V, Simons FE and Hayglass KT. Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigen-driven IFN-gamma over IL-4 responses, FASEB J 1998; 12, 705–713.
48. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE and Luster AD. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking, J Immunol 2002; 168: 3195–3204.
49. Ferrero E, Biswas P, Vettoretto K, Ferrarini M, Uguccioni M, Piali L, et al. Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on gammadelta cells, Immunology 2003; 108: 365–374.
50. Azzurri A, Sow OY, Amedei A, Bah B, Diallo S, Peri G, et al. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection, Microbes Infect 2005; 7: 1–8.
51. Whittaker E, Gordon A and Kampmann B. Is IP-10 a better biomarker for active and latent tuberculosis in children than IFN-gamma? PLoS One 2008; 3: e3901.
52. Ruhwald M, Bjerregaard-Andersen M, Rabna P, Kofoed K, Eugen-Olsen J and Ravn P. CXCL10/IP-10 release is induced by incubation of whole blood from tuberculosis patients withESAT-6, CFP10 and TB7.7, Microbes Infect 2007;9: 806–812.
53. Lockhart E, Green AM and Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection, J Immunol 2006; 177; 4662–4669.
54. Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB et al. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia, J Exp Med 2007; 204: 995–1001.
55. Stockinger B, Veldhoen M and Martin B. Th17 T cells. Linking innate and adaptive immunity, Semin Immunol 2007; 19: 353–361.
56. Scriba TJ, Kalsdorf B, Abrahams DA, Isaacs F, Hofmeister J, Black G, et al. Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response, J Immunol 2008;180:1962–1970.
57. Poggi A, Catellani S, Musso A and Zocchi MR. Gammadelta T lymphocytes producing ifngamma and IL-17 in response to Candida albicans or mycobacterial antigens: possible implications for acute and chronic inflammation, Curr Med Chem2009; 16: 4743–4749.
58. Tanaka S, Yoshimoto T, Naka T, Nakae S, Iwakura Y, Cua D, et al. Natural occurring IL-17 producing T cells regulate the initial phase of neutrophil mediated airway responses, J Immunol 2009; 183: 7523–7530.
59. Khader SA and Cooper AM. IL-23 and IL-17 in tuberculosis, Cytokine 2008; 41: 79–83.
60. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection, J Immunol 2007;178: 3786–3796.
61. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge, Nat Immunol 2007; 8; 369–377.
62. Bai H, Cheng J, Gao X, Joyee AG, Fan Y, Wang S, et al. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function, J Immunol 2009; 183: 5886–5895.
63. Dheda K, Chang JS, Lala S, Huggett JF, Zumla A and Rook GA. Gene expression of IL17 and IL23 in the lungs of patients with active tuberculosis, Thorax 2008;63, 566–568.
64. de Beer FC, Nel AE, Gie RP, Donald PR and Strachan AF. Serum amyloidAprotein and C-reactive protein levels in pulmonary tuberculosis: relationship to amyloidosis, Thorax 1984; 39: 196–200.
65. Maasilta P and Kostiala AA. Serum levels of C-reactive protein in patients with pulmonary tuberculosis and malignant tumors of the chest, Infection 1989; 17: 13–14.
66. Scott GM, Murphy PG and Gemidjioglu ME. Predicting deterioration of treated tuberculosis by corticosteroid reserve and C-reactive protein, J Infect 1990; 21: 61–69.
67. Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol 2007; 27:347e62.
68. Lopez M, Sly LM, Luu Y, Young D, Cooper H, Reiner NE. The 19- kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J Immunol 2003; 170:2409e16.
69. Bulut Y, Faure E, Thomas L, Equils O, Arditi M. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 2001;167:987e94.
70. Quesniaux VJ, Nicolle DM, Torres D, Kremer L, Guerardel Y, Nigou J, et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol 2004;172:4425e34.
71. Fricke I, Mitchell D, Mittelst€adt Lehan N, Lehan N, Heine H, Goldmann T, et al. Mycobacteria induce IFN-g production in human dendritic cells via triggering of TLR2. J Immunol 2006; 176:5173e82.
72. Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, et al. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 2002; 169:3480e4.
73. Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 2004; 164:49e57.
74. Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 2010; 8:296e307.
75. Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9:535e42.
76. Thada S, Valluri V, Gaddam SL. Influence of toll like receptor gene polymorphisms to tuberculosis susceptibility in humans. Scand J Immunol 2013; 78:221e9.
77. Zhang Y, Jiang T, Yang X, Xue Y, Wang C, Liu J, et al. Toll-like receptor-1, -2, and -6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. PLoS One 2013; 8:e63357.
78. Pero R, Peluso S, Angrisano T, Tuccillo C, Sacchetti S, Keller S, et al. Chromatin and DNA methylation dynamics of Helicobacter pylori-induced COX-2 activation. Int J Med Microbiol 2011; 301:140e9.
79. Mukherjee S, Vipat VC, Chakrabarti AK. Infection with influenza A viruses causes changes in promoter DNA methylation of inflammatory genes. Influenza Other Respir Viruses 2013; 7:979e86.
80. Al-Quraishy S, Dkhil MA, Abdel-Baki AA, Delic D, Santourlidis S, Wunderlich F. Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of TLR1 and TLR6 gene promoters in liver, but not spleen, of female C57BL/6 mice. Parasitol Res 2013; 112:3757e70.
81. Shuto T, Furuta T, Oba M, Xu H, Li JD, Cheung J, et al. Promoter hypomethylation of Toll-like receptor-2 gene is associated with increased pro-inflammatory response toward bacterial peptidoglycan in cystic fibrosis bronchial epithelial cells. FASEB J 2006; 20:782e4.
82. Furuta T, Shuto T, Shimasaki S, Ohira Y, Suico MA, Gruenert DC, et al. DNA demethylation-dependent enhancement of TLR2 gene expression in cystic fibrosis epithelial cells involves SP1- activated transcription. BMC Mol Biol 2008; 9:39.
83. Liao WT, You HL, Li C, Chang JG, Chang SJ, Chen CJ. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2. J Mol Med (Berl). 2014 Dec 6.
84. Shepherd FA, Douillard JY, Blumenschein GR Jr. Immunotherapy for non-small cell lung cancer: novel approaches to improve patient outcome. J Thorac Oncol 2011; 6(10): 1763–1773.
85. Ettinger DS, Akerley W, Bepler G, Blum MG, Chang A, et al. Non-small cell lung cancer. J Natl Compr Canc Netw 2010; 8(7): 740–801.
86. NSCLC Group. Chemotherapy in non-small cell lung cancer: A metaanalysis using updated data on individual patients from 52 randomised clinical trials. BMJ 1995;311: 899–909.
87. Caras I, Grigorescu A, Stavaru C, Radu DL, Mogos I, et al. Evidence for immune defects in breast and lung cancer patients. Cancer Immunol Immunother 2004; 53(12): 1146–1152.
88. Stampfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 2009; 9(5): 377–384.
89. Lee JM, Yanagawa J, Peebles KA, Sharma S, Mao JT, et al. Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 2008; 66(3): 208–217.
90. Dai F, Liu L, Che G, Yu N, Pu Q, et al. The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer 2010; 10: 220.
91. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3(11): 991.
92. Liu WM, Fowler DW, Smith P, Dalgleish AG. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer 2010; 102(1): 115–123.
93. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumorbearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11(18): 6713–6721.
94. Plate JM, Plate AE, Shott S, Bograd S, Harris JE. Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol Immunother 2005; 54(9): 915–925.
95. Nowak AK, Robinson BW, Lake RA. Gemcitabine exerts a selective effect on the humoral immune response: implications for combination chemoimmunotherapy. Cancer Res2002; 62(8): 2353–2358.
96. Merritt RE, Mahtabifard A, Yamada RE, Crystal RG, Korst RJ Cisplatin augments cytotoxic T-lymphocyte-mediated antitumor immunity in poorly immunogenic murine lung cancer. J Thorac Cardiovasc Surg 2003; 126(5): 1609–1617.
97. Delbaldo C, Michiels S, Syz N, Soria JC, Le Chevalier T, et al. Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA2004; 292(4): 470–484.
98. Chen YC, Hsiao CC, Chen KD, Hung YC, Wu CY, Lie CH, et al. Peripheral immune cell gene expression changes in advanced non-small cell lung cancer patients treated with first line combination chemotherapy. PloS one. 2013; 8(2):e57053.
99. Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer treatment reviews. 2014; 40(4):558-66.
100. Buchau AS, Hassan M, Kukova G, Lewerenz V, Kellermann S, Wurthner JU, et al. S100A15, an antimicrobial protein of the skin: regulation by E. coli through Toll-like receptor 4. The Journal of investigative dermatology. 2007; 127(11):2596-604.
101. Wolf R, Lewerenz V, Buchau AS, Walz M, Ruzicka T. Human S100A15 splice variants are differentially expressed in inflammatory skin diseases and regulated through Th1 cytokines and calcium. Experimental dermatology 2007; 16(8):685-91.
102. Wolf R, Voscopoulos C, Winston J, Dharamsi A, Goldsmith P, Gunsior M, et al. Highly homologous hS100A15 and hS100A7 proteins are distinctly expressed in normal breast tissue and breast cancer. Cancer letters 2009; 277(1):101-7.
103. Briso EM, Guinea-Viniegra J, Bakiri L, Rogon Z, Petzelbauer P, Eils R, et al. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos. Genes &; development2013; 27(18):1959-73.
104. Hattinger E, Zwicker S, Ruzicka T, Yuspa SH, Wolf R. Opposing functions of psoriasin (S100A7) and koebnerisin (S100A15) in epithelial carcinogenesis. Current opinion in pharmacology. 2013; 13(4):588-94.
105. Fleischhacker M, Dietrich D, Liebenberg V, Field JK, Schmidt B. The role of DNA methylation as biomarkers in the clinical management of lung cancer. Expert review of respiratory medicine. 2013; 7(4):363-83.
106. Hu J, Bianchi F, Ferguson M, Cesario A, Margaritora S, et al. Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 2005; 24(7): 1212–1219.
107. Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006; 3(12): e467.
108. Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 2007; 356(1): 11–20.
109. Guo NL, Wan YW, Tosun K, Lin H, Msiska Z, et al. Confirmation of gene expression-based prediction of survival in non-small cell lung cancer. Clin Cancer Res 2008); 14(24): 8213–8220.
110. Sun Z, Wigle DA, Yang P. Non-overlapping and non-cell-type-specific gene expression signatures predict lung cancer survival. J Clin Oncol 2008; 26(6): 877–883.
111. Boutros PC, Lau SK, Pintilie M, Liu N, Shepherd FA, et al. ‘‘Prognostic gene signatures for non-small-cell lung cancer. Proc Natl Acad Sci U S A 2009; 106(8): 2824–2828.
112. Keller A, Leidinger P, Borries A, Wendschlag A, Wucherpfennig F, et al. miRNAs in lung cancer - studying complex fingerprints in patient’s blood cells by microarray experiments. BMC Cancer 2009; 9: 353.
113. Roepman P, Jassem J, Smit EF, Muley T, Niklinski J, et al. An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer. Clin Cancer Res 2009; 15(1): 284–290.
114. Showe MK, Vachani A, Kossenkov AV, Yousef M, Nichols C, et al. Gene expression profiles in peripheral blood mononuclear cells can distinguish patients with non-small cell lung cancer from patients with nonmalignant lung disease. Cancer Res 2009;69(24): 9202–9210.
115. Zhu CQ, Ding K, Strumpf D, Weir BA, Meyerson M, et al. Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-smallcell lung cancer. J Clin Oncol 2010; 28(29): 4417–4424.
116. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, Fujiwara P, Grzemska M, Hopewell PC, Iseman MD, Jasmer RM, Koppaka V, Menzies RI, O’Brien RJ, Reves RR, Reichman LB, Simone PM, Starke JR and Vernon AA. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis, Am J Respir Crit Care Med 2003; 167: 603–662.
117. Christie JD and Callihan DR. The laboratory diagnosis of mycobacterial diseases. Challenges and common sense. Clin Lab Med 1995; 15: 279–306.
118. McAdams HP, Erasmus J and Winter JA. Radiologic manifestations of pulmonary tuberculosis, Radiol Clin North Am 1995; 33, 655–678.
119. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100(16):9440-5.
120. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 1995; 57:289-300.
121. Chen YC, Hsiao CC, Chen CJ, Chin CH, Liu SF, Wu CC, et al. Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts. BMC Med Genet 2010; 11:17.
122. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 2003; 167:603e62.
123. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal. Statistical Soc Ser B 1995; 57:289e300.
124. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402–408.
125. Tripathi SC, Matta A, Kaur J, Grigull J, Chauhan SS, et al. Nuclear S100A7 is associated with poor prognosis in head and neck cancer. PLoS One 2010; 5(8): e11939.
126. Yim JJ, Kim HJ, Kwon OJ, Koh WJ: Association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and nontuberculous mycobacterial lung disease in a Korean population. Hum Immunol 2008; 69(9):572-576.
127. Yim JJ, Ding L, Schäffer AA, Park GY, Shim YS, Holland SM: A microsatellite polymorphism in intron 2 of human toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol 2004; 40(2):163-169.
128. Noguchi E, Nishimura F, Fukai H, Kim J, Ichikawa K, Shibasaki M, Arinami T: An association study of asthma and total serum immunoglobin E levels for toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy 2004; 34(2):177-183.
129. Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN: FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 2006; 34 Web Server: w635-w641.
130. Breen RA, Leonard O, Perrin FM, Smith CJ, Bhagani S, Cropley S, Lipman MC: How good are systemic symptoms and blood inflammatory markers at detecting individuals with tuberculosis? Int J Tuberc Lung Dis 2008; 12(1):44-9.
131. Wang F, Tahara T, Arisawa T, Shibata T, Nakamura M, Fujita H, Iwata M, Kamiya Y, Nagasaka M, Takahama K, Watanabe M, Hirata I, Nakano H: Genetic polymorphisms of CD14 and toll-like receptor 2 in patients with ulcerative colitis. J Gastroenterol Hepatol 2007; 22(6):925-929.
132. Marcenaro E, Ferranti B, Falco M, Moretta L, Moretta A: Human NK cells directly recognize Mycobacterium bovis via TLR2 and acquire the ability to kill monocyte-derived DC. Int Immunol 2008; 20(9):1155-1167.
133. Tsao TCY, Chen CH, Hong JH, Hsieh MJ, Tsao KC, Lee CH: Shifts of T4/T8 T lymphocytes from BAL fluid and peripheral blood by clinical grade in patients with pulmonary tuberculosis. Chest 2002; 122(4): 1285-1291.
134. Gopi A, Madhavan SM, Sharma SK, Sahn SA: Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest 2007; 131(3):880-889.
135. Hertoghe T, Wajja A, Ntambi L, Okwera A, Aziz MA, Hirsch C, Johnson J, Toossi Z, Mugerwa R, Mugyenyi P, Colebunders R, Ellner J, and Vanham G. T cell activation, apoptosis and cytokine dysregulation in the (co)pathogenesis of HIV and pulmonary tuberculosis (TB), Clin Exp Immunol 2000; 122: 350–357.
136. Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J and Flynn JL. Depletion of CD4(+)Tcells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2, J Exp Med 2000; 192: 347–358.
137. Lewinsohn DA, Heinzel AS, Gardner JM, Zhu L, Alderson MR and Lewinsohn DM. Mycobacterium tuberculosisspecific CD8+ Tcells preferentially recognize heavily infected cells, Am J Respir Crit Care Med 2003; 168: 1346–1352.
138. Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV and Orme IM. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis, Infect Immun 2001; 69, 1722–1728.
139. Tsao TC, Chen CH, Hong JH, Hsieh MJ, Tsao KC and Lee CH. Shifts of T4/T8 T lymphocytes from BAL fluid and peripheral blood by clinical grade in patients with pulmonary tuberculosis, Chest 2002; 122: 1285–1291.
140. Veenstra H, Baumann R, Carroll NM, Lukey PT, Kidd M, Beyers N, Bolliger CT, van Helden PD and Walzl G. Changes in leucocyte and lymphocyte subsets during tuberculosis treatment; prominence of CD3dimCD56+ natural killer T cells in fast treatment responders, Clin Exp Immunol 2006; 145: 252–260.
141. Cohn DL, Catlin BJ, Peterson KL, Judson FN and Sbarbaro JA. A 62-dose, 6-month therapy for pulmonary and extrapulmonary tuberculosis. Atwice-weekly, directly observed, and cost-effective regimen, Ann Intern Med 1990; 112: 407–415.
142. Heo EY, Chun EJ, Lee CH, Kim YW, Han SK, Shim YS, Lee HJ and Yim JJ. Radiographic improvement and its predictors in patients with pulmonary tuberculosis, Int J Infect Dis 2009; 13: 371–376.
143. Singla R, Srinath D, Gupta S, Visalakshi P, Khalid UK, Singla N, Gupta UA, Bharty SK and Behera D. Risk factors for new pulmonary tuberculosis patients failing treatment under the Revised National Tuberculosis Control Programme, India, Int J Tuberc Lung Dis 2009; 13: 521–526.
144. Djoba Siawaya JF, Bapela NB, Ronacher K, Veenstra H, Kidd M, Gie R, Beyers N, van Helden P and Walzl G. Immune parameters as markers of tuberculosis extent of disease and early prediction of anti-tuberculosis chemotherapy response, J Infect 2008; 56: 340–347.
145. Hunter RL, Olsen MR, Jaqannath C and Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary and cavitary tuberculosis, including a revised description of the pathology of secondary disease, Ann Clin Lab Sci 2006; 36: 371–386.
146. Saunders BM and Britton WJ. Life and death in the granuloma: immunopathology of tuberculosis, Immunol Cell Biol 2007; 85: 103–111.
147. Wallace JM, Hansen NI, Lavange L, Glassroth J, Browdy BL, Rosen MJ, Kvale PA, Mangura BT, Reichman LB and Hopewell PC. Respiratory disease trends in the Pulmonary Complications of HIV Infection Study cohort. Pulmonary Complications of HIV Infection Study Group, Am J Respir Crit Care Med 1997; 155: 72–80.
148. Muyoyeta M, Schaap JA, De Haas P, Mwanza W, Muvwimi MW, Godfrey-Faussett P, and Ayles H. Comparison of four culture systems for Mycobacterium tuberculosis in the Zambian National Refere nce Laboratory, Int J Tuberc Lung Dis 2009; 13: 460–465.
149. Nardell EA. Impact of DOTS and DOTS-plus on multidrug resistant TB: DOTS-plus strengthens, not weakens, DOTS programmes, BMJ 2003; 327: 164.
150. Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients, Lung Cancer 2009; (Epub ahead of print).
151. Nieminen K, Valovirta E, and Savolainen J. Clinical outcome and IL-17, IL-23, IL-27 and FOXP3 expression in peripheral blood mononuclear cells of pollen-allergic children during sublingual immunotherapy, Pediatr Allergy Immunol 2009; (Epub ahead of print).
152. Basu J, Shin DM, Jo EK. Mycobacterial signaling through toll-like receptors. Front Cell Infect Microbiol 2012; 2:145.
153. Yu X, Zeng J, Xie J. Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control. Biochimie 2014 http://dx.doi.org/10.1016/j.biochi. 2014.02.012.
154. Gou Z, Liu R, Zhao G, Zheng M, Li P, Wang H, et al. Epigenetic modification of TLRs in leukocytes is associated with increased susceptibility to Salmonella enteritidis in chickens. PLoS One 2012; 7:e33627.
155. De Oliveira NF, Andia DC, Planello AC, Pasetto S, Marques MR, Nociti FH, et al. TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol 2011; 38:975e83.
156. Hogaboam CM, Murray L, Martinez FJ. Epigenetic mechanisms through which Toll-like receptor-9 drives idiopathic pulmonary fibrosis progression. Proc Am Thorac Soc 2012; 9:172e6.
157. Ryu YJ, Kim EJ, Lee SH, Kim SY, Suh GY, Chung MP, et al. Impaired expression of Toll-like receptor 2 in non-tuberculous mycobacterial lung disease. Eur Respir J 2007; 30:736e42.
158. Babu S, Bhat SQ, Kumar NP, Anuradha R, Kumaran P, Gopi PG, et al. Attenuation of toll-like receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following anti-filarial chemotherapy. PLoS Negl Trop Dis 2009; 3:e489.
159. Wang JY, Chang HC, Liu JL, Shu CC, Lee CH, Wang JT, et al. Expression of toll-like receptor 2 and plasma level of interleukin-10 are associated with outcome in tuberculosis. Eur J Clin Microbiol Infect Dis 2012; 31:2327e33.
160. Ghorpade DS, Holla S, Kaveri SV, Bayry J, Patil SA, Balaji KN. Sonic hedgehog-dependent induction of microRNA 31/150 regulates Mycobacterium bovis BCG-driven TLR 2 signaling. Mol Cell Biol 2013; 33:543e56.
161. Basu S, Pathak SK, Banerjee A, Pathak S, Bhattacharyya A, Yang Z, et al. Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-alpha. J Biol Chem 2007; 282:1039e50.
162. Schierloh P, Yokobori N, Aleman M, Landoni V, Geffner L, Musella RM, et al. Mycobacterium tuberculosis-induced gamma interferon production by natural killer cells requires cross talk with antigen-presenting cells involving Toll-like receptors 2 and 4 and the mannose receptor in tuberculous pleurisy. Infect Immun 2007; 75:5325e37.
163. Esin S, Counoupas C, Aulicino A, Brancatisano FL, Maisetta G, Bottai D, et al. Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and toll-like receptor 2. Scand J Immunol 2013; 77:460e9.
164. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 2010; 28(12):1248–50. PubMed: 21139605 DOI: 10.1038/nbt1210–1248.
165. Grills C, Jithesh PV, Blayney J, Zhang SD, Fennell DA. Gene expression meta-analysis identifies VDAC1 as a predictor of poor outcome in early stage non-small cell lung cancer. PLoS One 2011; 6(1): e14635.
166. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58(1): 49–59.
167. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol 2008; 66: 1–9.
168. Mailloux AW, Clark AM, Young MR. NK depletion results in increased CCL22 secretion and Treg levels in Lewis lung carcinoma via the accumulation of CCL22-secreting CD11btCD11ct cells. Int. J. Cancer 2010; 127: 2598–2611.
169. Vasievich EA, Huang L. The suppressive tumor microenvironment: a challenge in cancer immunotherapy. Mol Pharm 2011; 8(3): 635–641.
170. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S, et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179(2): 977–983.
171. Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S. Pivotal Advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE catabolism in myeloid cells. J Leukoc Biol 2010; 88(5): 839–848.
172. Todaro M, Lombardo Y, Francipane MG, Alea MP, Cammareri P, et al. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ2008; 15(4): 762–772.
173. Mazzoccoli G, Sothern RB, Parrella P, Muscarella LA, Fazio VM, et al. Comparison of circadian characteristics for cytotoxic lymphocyte subsets in nonsmall cell lung cancer patients versus controls. Clin Exp Med 2011; Sep 11. [Epub ahead of print] DOI: 10.1007/s10238-011-0153-6.
174. Kawashima O, Kamiyoshihara M, Sakata S, Endo K, Saito R, et al. The clinicopathological significance of preoperative serum-soluble interleukin-2 receptor concentrations in operable non-small-cell lung cancer patients. Ann Surg Oncol 2000; 7(3): 239–245.
175. Otsuka S, Bebb G. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol 2008; 3(12): 1379–1383.
176. Kawakami M, Kawakami K, Stepensky VA, Maki RA, Robin H, et al. Interleukin 4 receptor on human lung cancer: a molecular target for cytotoxin therapy. Clin Cancer Res 2002; 8(11): 3503–3511.
177. Kossenkov AV, Dawany N, Evans TL, Kucharczuk JC, Albelda SM, et al. Peripheral immune cell gene expression predicts survival of patients with non-small cell lung cancer. PLoS One 2012; 7(3): e34392.
178. Berger AH, Niki M, Morotti A, Taylor BS, Socci ND, et al. Identification of DOK genes as lung tumor suppressors. Nat Genet 2010; 42(3): 216–223.
179. Della Peruta M, Giagulli C, Laudanna C, Scarpa A, Sorio C, et al. RHOA and PRKCZ control different aspects of cell motility in pancreatic cancer metastatic clones. Mol Cancer 2010; 9: 61.
180. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, et al. miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 2010; 29(30): 4297–4306.
181. Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, et al. p37delta is a new isoform of PI3K p110delta that increases cell proliferation and is overexpressed in tumors. Oncogene 2011; Oct 24. DOI: 10.1038/onc.2011.492.[Epub ahead of print].
182. Khodarev NN, Roach P, Pitroda SP, Golden DW, Bhayani M, et al. STAT1 pathway mediates amplification of metastatic potential and resistance to therapy. PLoS One 2009; 4(6): e5821.
183. Oliveras-Ferraros C, Vazquez-Martin A, Queralt B, Adrados M, Ortiz R, et al. Interferon/STAT1 and neuregulin signaling pathways are exploratory biomarkers of cetuximab (Erbitux(R)) efficacy in KRAS wild-type squamous carcinomas: a pathway-based analysis of whole human-genome microarray data from cetuximab-adapted tumor cell-line models. Int J Oncol 2011; 39(6): 1455–1479.
184. Kohn EC, Liotta LA. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 1995; 55(9): 1856–1862.
185. Wolf R, Voscopoulos C, et al. ‘Highly homologous hS100A15 and hS100A7 proteins are distinctly expressed in normal breast tissue and breast cancer. Cancer Lett 2009; 277(1): 101–107.
186. Wolf R, Voscopoulos C, Winston J, Dharamsi A, Goldsmith P, et al. Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15. J Immunol 2008; 181(2): 1499–1506.
187. Wolf R, Ruzicka T, Yuspa SH. Novel S100A7 (psoriasin)/S100A15 (koebnerisin) subfamily: highly homologous but distinct in regulation and function. Amino Acids 2011; 41(4): 789–96.
188. Buchau AS, Hassan M, Kukova G, Lewerenz V, Kellermann S, et al. S100A15, an antimicrobial protein of the skin: regulation by E. coli through Toll-like receptor 4. J Invest Dermatol 2007; 127(11): 2596–2604.
189. Zhang H, Zhao Q, Chen Y, Wang Y, Gao S, et al. Selective expression of S100A7 in lung squamous cell carcinomas and large cell carcinomas but not in adenocarcinomas and small cell carcinomas. Thorax 2008; 63(4): 352–359.
190. Kossenkov AV, Vachani A, Chang C, Nichols C, Billouin S, et al. Resection of non-small cell lung cancers reverses tumor-induced gene expression changes in the peripheral immune system. Clin Cancer Res 2011; 17(18): 5867–5877.
191. Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, et al. Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 2010; 120(4): 1285–1297.
192. Dumitru CD, Antonysamy MA, Tomai MA, Lipson KE. Potentiation of the anti-tumor effects of imidazoquinoline immune response modifiers by cyclophosphamide. Cancer Biol Ther 2010; 10(2): 155–165.
193. Shojaei H, Oberg HH, Juricke M, Marischen L, Kunz M, et al. Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res 2009; 69(22): 8710–8717.
194. Dahlman A, Edsjo A, Hallden C, Persson JL, Fine SW, et al. Effect of androgen deprivation therapy on the expression of prostate cancer biomarkers MSMB and MSMB-binding protein CRISP3. Prostate Cancer Prostatic Dis 2010; 13(4): 369–375.
195. Khaitan D, Sankpal UT, Weksler B, Meister EA, Romero IA, et al. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain. BMC Cancer 2009; 9: 258.
196. Perez-Pinera P, Hernandez T, Garcia-Suarez O, de Carlos F, Germana A, et al. The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol Cell Biochem 2007; 295(1–2): 19–26.
197. Cao L, Liu X, Lin EJ, Wang C, Choi EY, et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 2010; 142(1): 52–64.
198. Okabe M, Szakacs G, Reimers MA, Suzuki T, Hall MD, et al. Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther 2008; 7(9): 3081–3091.
199. Saviouk V, Moreau MP, Tereshchenko IV, Brzustowicz LM. Association of synapsin 2 with schizophrenia in families of Northern European ancestry. Schizophr Res 2007; 96(1–3): 100–11.
200. Burczynski ME, Twine NC, Dukart G, Marshall B, Hidalgo M, et al. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res 2005; 11: 1181–9.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top