跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/12 21:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張妙寧
研究生(外文):Miao-Ning Chang
論文名稱:含雙醯胺吡啶與多羧酸配位基之二價配位高分子的合成、結構與性質研究:金屬與配位基對結構的影響
論文名稱(外文):Synthesis, Structures and Properties of Divalent Coordination Polymers Containing Bis-pyridyl-bis-amide and Polycarboxylate Ligands: Metal and Ligand Effect
指導教授:陳志德
指導教授(外文):Jhy-Der Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:178
中文關鍵詞:配位高分子拓譜學雙醯胺吡啶
外文關鍵詞:coordination polymertopologybis-pyridyl-bis-amide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由一系列不同長度與位向的雙醯胺吡啶與多羧酸輔助配位基搭配二價d7 - d10過渡金屬鹽類以水熱法合成出十種化合物: {[Ni(L1)(3,5-PDA)(H2O)3]·2H2O}n (L1 = N,N’-di(3-pyridyl)suberoamide, 3,5-H2PDA = 3,5-pyridinedicarboxylic acid), 1, {[Ni2(L1)2(1,3,5-HBTC)2(H2O)4]·H2O}n (1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid), 2, {[Ni(L2)(5-tert-IPA)(H2O)2]·2H2O}n (L2 = N,N’-di(3-pyridyl)adipoamide, 5-tert-H2IPA = 5-tert-butylisophthalic acid), 3, [Ni(L3)1.5(5-tert-IPA)]n (L3 = N,N’-di(4-pyridyl)adipoamide), 4, [Co(L1)(1,3,5-HBTC)(H2O)]n, 5, {[Co3(L1)3(1,3,5-BTC)2(H2O)2]·6H2O}n, 6, [Cu(L4)(AIPA)]n (L4 = N,N’-bis(3-pyridinyl)terephthalamide, H2AIPA = 5-acetamido isophthalic acid), 7, {[Cu(L2)0.5(AIPA)]·MeOH}n, 8, {[Zn(L4)(AIPA)]·2H2O}n, 9, {[Zn(L2)(AIPA)]·2H2O}n, 10。這些化合物藉由單晶X-ray繞射儀鑑定其結構,並以粉末X-ray繞射儀與熱重分析儀來研究化合物的特性。
化合物1具一維鏈狀結構,而化合物2具sql拓譜學之二維層狀結構。化合物3與4的差別在中性配位基的位向不同,前者為具63拓譜學的二維層狀結構,而後者為具(42·67·8)拓譜學的三維網狀結構。化合物5與6因反應時多羧酸配位基比例不同而有不同的結構,前者為具sql拓譜學的二維層狀結構,而後者為具(4·85)2(4)2(83)2(8)拓譜學之二維層狀結構,可進一步的簡化為63拓譜學構型。化合物7 - 10的合成差異在於運用不同柔軟度的中性配位基。化合物7具sql拓譜學之二維層狀結構,化合物8具pcu拓譜學之三維網狀結構,且具有2-fold的自我貫穿現象。化合物9與10皆為三維網狀結構,前者具8T2拓譜學,後者具(44·610·8)拓譜學。本文亦探討部分化合物的發光與光降解催化特性。
Ten divalent coordination polymers constructed from polycarboxylic acids and flexible bis-pyridyl-bis-amide ligands with different lengths and donor atom positions, {[Ni(L1)(3,5-PDA)(H2O)3]·2H2O}n (L1 = N,N’-di(3-pyridyl)suberoamide, 3,5-H2PDA = 3,5-pyridinedicarboxylic acid), 1, {[Ni2(L1)2(1,3,5-HBTC)2(H2O)4]·H2O}n (1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid), 2, {[Ni(L2)(5-tert-IPA)(H2O)2]·2H2O}n (L2 = N,N’-di(3-pyridyl)adipoamide, 5-tert-H2IPA = 5-tert-butylisophthalic acid), 3, [Ni(L3)1.5(5-tert-IPA)]n (L3 = N,N’-di(4-pyridyl)adipoamide), 4, [Co(L1)(1,3,5-HBTC)(H2O)]n, 5, {[Co3(L1)3(1,3,5-BTC)2(H2O)2]·6H2O}n, 6, [Cu(L4)(AIPA)]n (L4 = N,N’-bis(3-pyridinyl)terephthalamide, H2AIPA = 5-acetamido isophthalic acid), 7, {[Cu(L2)0.5(AIPA)]·MeOH}n, 8, {[Zn(L4)(AIPA)]·2H2O}n, 9, {[Zn(L2)(AIPA)]·2H2O}n, 10, were synthesized by hydrothermal reactions. These complexes were structurally characterized by using single-crystal X-ray diffraction and their properties investigated by using powder X-ray diffraction and thermal gravimetric analysis.
Complex 1 forms a 1D chain, while complex 2 is a 2D layer with the sql topology. The bis-pyridyl-bis-amide ligands in 3 and 4 show different donor atom positions, resulting in a 2D layer with the 63 topology and a 3D network with the (42·67·8) topology, respectively. Different amounts of polycarboxylic acids in the preparations for complexes 5 and 6 were used, affording a 2D layer with the sql topology and a 2D network with the (4·85)2(4)2(83)2(8) topology, which can be further simplified to a 63 topology. Complexes 7 - 10 were prepared by the use of neutral ligands with different flexibility. While complex 7 is a 2D layer with the sql topology and complex 8 is a 2-fold interpenetrated 3D framework with the pcu topology, complexes 9 and 10 are 3D frameworks with the 8T2 and the (44·610·8) topologies, respectively. The emission properties and catalytic effect on the photodegradation of dye of some of the complexes are also discussed.
中文摘要
Abstract
Contents
List of Figures
List of Tables
1. Introduction
1-1. General introduction
1-2. Molecular entanglement
1-3. Topology
1-4. Photocatalysis property
1-5. Motivation
2. Experimental Section
2-1. General procedures
2-2. Materials
2-3. Preparations
2-3-1. {[Ni(L1)(3,5-PDA)(H2O)3]·2H2O}n, 1
2-3-2. {[Ni2(L1)2(1,3,5-HBTC)2(H2O)4]·H2O}n, 2
2-3-3. {[Ni(L2)(5-tert-IPA)(H2O)2]·2H2O}n, 3
2-3-4. [Ni(L3)1.5(5-tert-IPA)]n, 4
2-3-5. [Co(L1)(1,3,5-HBTC)(H2O)]n, 5
2-3-6. {[Co3(L1)3(1,3,5-BTC)2(H2O)2]·6H2O}n, 6
2-3-7. [Cu(L4)(AIPA)]n, 7
2-3-8. {[Cu(L2)0.5(AIPA)]·MeOH}n, 8
2-3-9. {[Zn(L4)(AIPA)]·2H2O}n, 9
2-3-10. {[Zn(L2)(AIPA)]·2H2O}n, 10
2-3-11. Photodegradation experiment
3. X-ray Crystallography
4. Results and Discussion
4-1. Ligand conformations
4-2. Structure description
4-2-1. {[Ni(L1)(3,5-PDA)(H2O)3]·2H2O}n, 1
4-1-2. {[Ni2(L1)2(1,3,5-HBTC)2(H2O)4]·H2O}n, 2
4-1-3. {[Ni(L2)(5-tert-IPA)(H2O)2]·2H2O}n, 3
4-1-4. [Ni(L3)1.5(5-tert-IPA)]n, 4
4-1-5. [Co(L1)(1,3,5-HBTC)(H2O)]n, 5
4-1-6. {[Co3(L1)3(1,3,5-BTC)2(H2O)2]·6H2O}n, 6
4-1-7. [Cu(L4)(AIPA)]n, 7
4-1-8. {[Cu(L2)0.5(AIPA)]·MeOH}n, 8
4-1-9. {[Zn(L4)(AIPA)]·2H2O}n, 9
4-1-10. {[Zn(L2)(AIPA)]·2H2O}n, 10
4-3. structural comparisons
4-4. Powder X-ray analysis
4-5. Thermal properties
4-5-1. {[Ni(L1)(3,5-PDA)(H2O)3]·2H2O}n, 1
4-5-2. {[Ni2(L1)2(1,3,5-HBTC)2(H2O)4]·H2O}n, 2
4-5-3. {[Ni(L2)(5-tert-IPA)(H2O)2]·2H2O}n, 3
4-5-4. [Ni(L3)1.5(5-tert-IPA)]n, 4
4-5-5. [Co(L1)(1,3,5-HBTC)(H2O)]n, 5
4-5-6. {[Co3(L1)3(1,3,5-BTC)2(H2O)2]·6H2O}n, 6
4-5-7. [Cu(L4)(AIPA)]n, 7
4-5-8. {[Cu(L2)0.5(AIPA)]·MeOH}n, 8
4-5-9. {[Zn(L4)(AIPA)]·2H2O}n, 9
4-5-10. {[Zn(L2)(AIPA)]·2H2O}n, 10
4-6. Luminescent properties
4-7. Photocatalysis properties
4-7-1. [Cu(L4)(AIPA)]n, 7
4-7-2. {[Cu(L2)0.5(AIPA)]·MeOH}n, 8
4-7-3. {[Zn(L4)(AIPA)]·2H2O}n, 9
Experiment 1
Experiment 2
Experiment 3
4-7-4. {[Zn(L2)(AIPA)]·2H2O}n, 10
Experiment 1
Experiment 2
Experiment 3
4-7-5. Stability
5. Conclusion
References
Check CIF
List of Figures
Figure 1.Schematic representation of 1D, 2D and 3D coordination polymers.
Figure 2.3-fold interpenetration.
Figure 3.1D → 2D polycatenated network, with density of catenation (Doc) = 2 and index of separation (Is) = 1.
Figure 4.Schematic simple symbol.
Figure 5.Schematic Schläfli symbol.
Figure 6.Schematic view of some specific topology.
Figure 7.Schematic diagram of the photodegradation mechanism.
Figure 8.A drawing showing the ligand L4.
Figure 9.A schematic view of the (1 + 3) self-catenated 3D net.
Figure 10.The structures of the ligands L1 – L3.
Figure 11.The structures of the polycarboxylate ligands.
Figure 12.The torsion angle of L1.
Figure 13.cis-trans conformation of L1.
Figure 14.Three possible orientations for the pyridyl nitrogen atoms of L1. (a) syn-syn (b) syn-anti (c) anti-anti
Figure 15.Coordination environment of Ni(II) ion in 1..
Figure 16.A drawing showing the 1D chain.
Figure 17.A drawing showing the 2D supramolecular structure through the N-H---O and N-H---O hydrogen bonds.
Figure 18.Coordination environment of Ni(II) ion in 2.
Figure 19.A drawing showing the 1D chain.
Figure 20.A drawing showing the 2D layer.
Figure 21.A drawing showing the Ni(II) cation defined as a 4-connected node.
Figure 22.A drawing showing the sql topology.
Figure 23.Coordination environment of Ni(II) ion in 3.
Figure 24.A drawing showing the 1D chain.
Figure 25.A drawing showing the 2D layer.
Figure 26.A drawing showing the Ni(II) cation defined as a 3-connected node.
Figure 27.A drawing showing the 63 topology.
Figure 28.Coordination environment of Ni(II) ion in 4.
Figure 29.A drawing showing the 2D layer.
Figure 30.A drawing showing the 3D network.
Figure 31.A drawing showing the Ni(II) cation defined as a 5-connected node.
Figure 32.A drawing showing the 5-connected net with the (42·67·8) topology.
Figure 33.Coordination environment of Co(II) ion in 5.
Figure 34.A drawing showing the 1D chain.
Figure 35.A drawing showing the 2D layer.
Figure 36.A drawing showing the Co(II) cation defined as a 4-connected node.
Figure 37.A drawing showing the sql topology.
Figure 38.Coordination environment of Co(II) ion in 6.
Figure 39.A drawing showing the 2D layer.
Figure 40.A drawing showing the (4·85)2(4)2(83)2(8) topology.
Figure 41.A drawing showing the 63 topology.
Figure 42.Coordination environment of Cu(II) ion in 7.
Figure 43.A drawing showing the dinuclear unit.
Figure 44.A drawing showing the 1D chain.
Figure 45.A drawing showing the 2D layer.
Figure 46.A drawing showing the Cu(II) cation defined as a 4-connected node.
Figure 47.A drawing showing the sql topology.
Figure 48.Coordination environment of Cu(II) ion in 8.
Figure 49.A drawing showing the dinuclear unit.
Figure 50.A drawing showing the 2D layer.
Figure 51.A drawing showing the 3D network.
Figure 52.A drawing showing the Cu(II) cation defined as a 6-connected node.
Figure 53.A drawing showing the pcu topology.
Figure 54.2-fold interpenetration.
Figure 55.Coordination environment of Zn(II) ion in 9.
Figure 56.A drawing showing the dinuclear unit.
Figure 57.A drawing showing the 2D layer.
Figure 58.A drawing showing the Zn(II) cation defined as a 8-connected node.
Figure 59.A drawing showing the 8T2 topology.
Figure 60.Coordination environment of Zn(II) ion in 10.
Figure 61.A drawing showing the dinuclear unit.
Figure 62.A drawing showing the 1D chain.
Figure 63.A drawing showing the Zn(II) cation defined as a 6-connected node.
Figure 64.A drawing showing the (44·610·8) topology.
Figure 65.The PXRD patterns for complex 1.
Figure 66.The PXRD patterns for complex 2.
Figure 67.The PXRD patterns for complex 3.
Figure 68.The PXRD patterns for complex 4.
Figure 69.The PXRD patterns for complex 5.
Figure 70.The PXRD patterns for complex 6.
Figure 71.The PXRD patterns for complex 7.
Figure 72.The PXRD patterns for complex 8.
Figure 73.The PXRD patterns for complex 9.
Figure 74.The PXRD patterns for complex 10.
Figure 75.The TGA curve for complex 1.
Figure 76.The TGA curve for complex 2.
Figure 77.The TGA curve for complex 3.
Figure 78.The TGA curve for complex 4.
Figure 79.The TGA curve for complex 5.
Figure 80.The TGA curve for complex 6.
Figure 81.The TGA curve for complex 7.
Figure 82.The TGA curve for complex 8.
Figure 83.The TGA curve for complex 9.
Figure 84.The TGA curve for complex 10.
Figure 85.The absorption spectra in solid state of L2, L4, H2AIPA, and complexes 9 and 10.
Figure 86.The excitation and emission spectra of free ligand of L2.
Figure 87.The excitation and emission spectra of free ligand of L4.
Figure 88.The excitation and emission spectra of free ligand of H2AIPA.
Figure 89.The excitation and emission spectra of complex 9.
Figure 90.The excitation and emission spectra of complex 10.
Figure 91.The UV spectra of tube 1 for complex 7.
Figure 92.The UV spectra of tube 2 for complex 7.
Figure 93.The UV spectra of tube 3 for complex 7.
Figure 94.The UV spectra of tube 4 for complex 7.
Figure 95.Degradation efficiency of the experiment 1 for complex 7.
Figure 96.The UV spectra of tube 1 for complex 8.
Figure 97.The UV spectra of tube 2 for complex 8.
Figure 98.The UV spectra of tube 3 for complex 8.
Figure 99.The UV spectra of tube 4 for complex 8.
Figure 100.Degradation efficiency of the experiment 1 for complex 8.
Figure 101.The UV spectra of tube 1 for complex 9.
Figure 102.The UV spectra of tube 2 for complex 9.
Figure 103.The UV spectra of tube 3 for complex 9.
Figure 104.The UV spectra of tube 4 for complex 9.
Figure 105.Degradation efficiency of the experiment 1 for complex 9.
Figure 106.The UV spectra of tube 1 for complex 9.
Figure 107.The UV spectra of tube 2 for complex 9.
Figure 108.The UV spectra of tube 3 for complex 9.
Figure 109.The UV spectra of tube 4 for complex 9.
Figure 110.Degradation efficiency of the experiment 2 for complex 9.
Figure 111.The UV spectra of tube 1 for complex 9.
Figure 112.The UV spectra of tube 2 for complex 9.
Figure 113.The UV spectra of tube 3 for complex 9.
Figure 114.The UV spectra of tube 4 for complex 9.
Figure 115.Degradation efficiency of the experiment 3 for complex 9.
Figure 116.The UV spectra of tube 1 for complex 10.
Figure 117.The UV spectra of tube 2 for complex 10.
Figure 118.The UV spectra of tube 3 for complex 10.
Figure 119.The UV spectra of tube 4 for complex 10.
Figure 120.Degradation efficiency of the experiment 1 for complex 10.
Figure 121.The UV spectra of tube 1 for complex 10.
Figure 122.The UV spectra of tube 2 for complex 10.
Figure 123.The UV spectra of tube 3 for complex 10.
Figure 124.The UV spectra of tube 4 for complex 10.
Figure 125.Degradation efficiency of the experiment 2 for complex 10.
Figure 126.The UV spectra of tube 1 for complex 10.
Figure 127.The UV spectra of tube 2 for complex 10.
Figure 128.The UV spectra of tube 3 for complex 10.
Figure 129.The UV spectra of tube 4 for complex 10.
Figure 130.Degradation efficiency of the experiment 3 for complex 10.
Figure 131.The PXRD patterns of complexes 7 - 10 and after photocatalytic degradation of MB.

Table 1.Crystal data for complex 1.
Table 2.Crystal data for complex 2.
Table 3.Crystal data for complex 3.
Table 4.Crystal data for complex 4.
Table 5.Crystal data for complex 5.
Table 6.Crystal data for complex 6.
Table 7.Crystal data for complex 7.
Table 8.Crystal data for complex 8.
Table 9.Crystal data for complex 9.
Table 10.Crystal data for complex 10.
Table 11.Selected bond lengths (Å) and angles (θ) for complex 1.
Table 12.Selected bond lengths (Å) and angles (θ) for complex 2.
Table 13.Selected bond lengths (Å) and angles (θ) for complex 3.
Table 14.Selected bond lengths (Å) and angles (θ) for complex 4.
Table 15.Selected bond lengths (Å) and angles (θ) for complex 5.
Table 16.Selected bond lengths (Å) and angles (θ) for complex 6.
Table 17.Selected bond lengths (Å) and angles (θ) for complex 7.
Table 18.Selected bond lengths (Å) and angles (θ) for complex 8.
Table 19.Selected bond lengths (Å) and angles (θ) for complex 9.
Table 20.Selected bond lengths (Å) and angles (θ) for complex 10.
Table 21.Structural difference between complex 2 and {[Cd3(1,3,5-BTC)2(L1)3(H2O)3]·8H2O}n.
Table 22.Structural difference between complexes 3 and 4.
Table 23.Structural difference between complexes 5 and 6.
Table 24.Structural difference among complexes 7 - 10.
Table 25.The absorption, excitation and emission wavelengths (nm) of L2, L4, H2AIPA, and complexes 9 and 10 in the solid state.
Table 26.Degradation efficiency table for complex 7.
Table 27.Degradation efficiency table for complex 8.
Table 28.Degradation efficiency table for complex 9.
Table 29.Degradation efficiency table for complex 10.
Y. Hao.; B. Wu.; S. Li.; B. Liu.; C. Jia.; X. Huang.; X. Yang, CrystEngComm, 2011, 13, 6285-6292.
(2)B. Chen.; M. Eddaoudi.; S. T. Hyde.; M. O’Keeffe.; O. M. Yaghi, Science, 2001, 291, 1021-1023.
(3)S. L. James, Chem. Soc. Rev., 2003, 32, 276-288.
(4)J. C. Bailar Jr, Prep.Inorg.React., 1964, 1, 1-27.
(5)C. Janiak, J. Chem. Soc., Dalton Trans., 2003, 2781-2804.
(6)C.-Y. Lin.; Z.-K. Chan.; C.-W. Yeh.; C.-J. Wu.; J.-D. Chen.; J.-C. Wang, CrystEngComm, 2006, 8, 841-846.
(7)X. -H. Bu.; W. Chen.; W. -F. Hou.; M. Du.; R. -H. Zhang.; F. Brisse, Inorg. Chem., 2002, 41, 3477-3482.
(8)A. J. Blake.; N. R. Champness.; P. A. Cooke.; J. E. B. Nicolson.; C. Wilson, J. Chem. Soc., Dalton Trans., 2000, 3811-3819.
(9)(a) S. R. Batten.; R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460-1494; (b) S. R. Batten, J. Solid State Chem., 2005, 178, 2475–2479.
(10)(a) Y. -Q. Lan.; S. -L. Li.; J. -S. Qin.; D. -Y. Du.; X. -L. Wang.; Z. -M. Su.; Q. Fu, Inorg. Chem., 2008, 47, 10600-10610; (b) C. Qin.; X. -L. Wang.; E. -B. Wang.; Z. -M. Su, Inorg. Chem., 2008, 47, 5555-5557; (c) F. Luo.; Y. -T. Yang.; Y. -X. Che.; J. -M. Zheng, CrystEngComm, 2008, 10, 981-921.
(11)L. Carlucci.; G. Ciani.; D. M. Proserpio, Coord. Chem. Rev., 2003, 246, 247-289.
(12)S. R. Batten,; R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460-1494.
(13)Y. -F. Hsu,; H. -L. Hu.; C. J-. Wu.; C. -W. Yeh.; D. M. Proserpioc.; J. -D. Chen, CrystEngComm, 2009, 11, 168-176.
(14)Y. -H. Liao.; W. Hsu.; C. -C. Yang.; C. -Y. Wu.; J. -D. Chen. J.-C. Wang, CrystEngComm, 2013, 15, 3974-3983.
(15)L. Carlucci.; G. Ciani.; D. M. Proserpio, Coord. Chem. Rev., 2003, 246, 247-289.
(16)A. F. Wells, Three-dimensional Nets and Polyhedra. Wiley-Interscience: New York., 1977.
(17)G. -H. Cui.; J. -R. Li.; J. -L. Tian.; X. -H. Bu.; S. R. Batten, Cryst. Growth Des., 2005, 5, 1775-1780.
(18)A. Yasumori.; K. Ishizu.; S. Hayashi.; K. Okada, J. Mater. Chem., 1998, 8, 2521-2524.
(19)Y. C. Lee.; Y. P. Hong.; H. Y. Lee.; H. Kim.; Y. J. Jung.; K. H. Ko. H. S. Jung.; K. S. Hong, J. Colloid Interface Sci., 2003, 267, 127-131.
(20)(a) T. -P. Tsai.; Y. -T. Huang.; U. Ray.; Y. -J. Chang.; P. -C. Cheng.; C. -J. Wu.; J. -D. Chen.; J. -C. Wang, Polyhedron, 2010, 29, 3081-3088; (b) W. -J. Huang.; C. -J. Hsu.; S. -K. Tsai.; H. -Y. He.; J.-J. Ding.; T. -W. Hsu.; C. -C. Yang.; J. -D. Chen, RSC Adv., 2015, 5, 23374-23382.
(21)K. B. Thapa.; J. -D. Chen, CrystEngComm, 2015, 17, 4611-4626.
(22)(a) Y. -F. Hsu.; H. -L. Hu.; C. -J. Wu.; C. -W. Yeh.; D. M. Proserpio.; J. -D. Chen, CrystEngComm, 2009, 11, 168-176; (b) Y. -F. Hsu.; C. -H. Lin.; J. -D. Chen.; J. -C. Wang, Cryst. Growth Des., 2008, 8, 1094-1096; (c) L. Rajput.; S. Singha.; K. Biradha, Cryst. Growth Des., 2007, 7, 2788-2795; (d) J. M. Kelleher.; S. E. Lawrence.; M. T. MaAuliffe.; H. A. Moynihan, CrystEngComm, 2007, 9, 72-77.
(23)H. -Y. He.; C. -H. Hsu.; H. -Y. Chang.; X. -K. Yang.; P. M. Chhetri.; D. M. Proserpio.; J. -D. Chen, Cryst. Growth Des., 2017, 17, 1991-1998.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊