跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/01 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宜頡
研究生(外文):Yi-Jie Lin
論文名稱:使用氣壓肌肉致動器於主動式車輛懸吊系統設計與控制
論文名稱(外文):Design and Control of Active Vehicle Suspension System with the Structure of Pneumatic Muscle Actuator
指導教授:蔣欣翰李聯旺李聯旺引用關係
指導教授(外文):Hsin-Han ChiangLian-Wang Lee
口試委員:蔣欣翰李聯旺徐國政彭昭暐
口試委員(外文):Hsin-Han ChiangLian-Wang LeeKou-Cheng HsuJau-Woei Perng
口試日期:2016-01-18
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:氣壓肌肉智慧型控制路面模擬系統主動式懸吊控制路面形態
外文關鍵詞:Pneumatic muscleIntelligent controlRoad surface simulatorActive suspension controlRoad profile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先提出一個以模糊控制為基礎之控制器對主動式車輛懸吊系統實驗所需的路面模擬系統進行控制,路面模擬系統以氣壓缸為致動器產生路面波動,以用來模擬真實的路面。並設計類神經網路學習不同環境下系統控制器之參數,以達到快速且能即時調整控制參數之目的。針對氣壓缸系統的高度非線性與不確定性,本研究加入基因演算法來輔助類神經網路,當類神經網路所得到的控制參數無法呈現好的路面追蹤效果時,本研究嘗試加入基因演算法尋找最佳的控制參數。論文第二部分,則是針對氣壓肌肉作為主動式車輛懸吊系統之致動器的可行性與有效性進行研究與分析,並設計LQR基礎之最佳控制器進行氣壓肌肉主動式車輛懸吊系統的路面抑振控制,為了提升懸吊控制系統的抑振效果,本論文也利用路面變化資訊設計車體位置控制的前饋補償。最後本論文透過不同的路面測試實驗,驗證氣壓肌肉致動器於主動式車輛懸吊系統的可行性與有效性。
This thesis firstly proposed a pneumatic road actuation system based on fuzzy logic control technique for the developed suspension test bench. The road actuation system can provide the simulated road profile for the analysis in the vehicle suspension control system. Further, the neural network (NN) is applied to learn the control parameters of fuzzy logic controller in different road surface conditions. Due to high nonlinearity and uncertainty of the utilized pneumatic actuation system in the developed road surface simulator, the genetic algorithm (GA) optimization is adopted to assist NN to gain the optimized control parameters for the fuzzy controller. In the second part of thesis, LQR-based optimal controller is designed for the pneumatic-muscle active vehicle suspension system against the road disturbance. Besides, the road profile is employed into the feedforward compensation with the vehicle body control loop so that the suspension control performance can be enhanced. Finally, the experimental results under different road conditions are given to verify the superior performance of the active suspension controller using pneumatic muscle actuators.
摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 車輛懸吊系統種類 1
1.3 研究動機 3
1.4 文獻回顧 4
1.4.1 主動式車輛懸吊系統 4
1.4.2 氣壓致動系統 5
1.4.3 氣壓肌肉致動器 6
1.5 章節架構 6
第二章 路面模擬系統之控制器設計 8
2.1 氣壓動態系統簡介 8
2.2 控制理論 8
2.2.1 模糊理論 9
2.2.2 類神經網路 10
2.2.3 基因演算法 11
2.3 控制器架構與設計 13
第三章 氣壓肌肉主動式懸吊系統之控制器設計 19
3.1 氣壓肌肉致動器 19
3.1.1 氣壓肌肉工作原理與特性 19
3.1.2 氣壓肌肉致動器數學模型 22
3.2 四分之一車氣壓肌肉主動式懸吊系統動態 24
3.3 主動式懸吊系統控制器設計 25
第四章 實驗系統架構與設備 30
4.1 實驗系統架構 30
4.2 路面模擬系統 33
4.3 氣壓肌肉致動系統 35
4.4 嵌入式控制系統 41
第五章 實驗結果 43
5.1 路面模擬系統控制實驗 43
5.2 氣壓肌肉主動式懸吊系統控制實驗 47
第六章 結論 53
6.1 結論 53
6.2 未來展望 53
參考文獻 55

[1]T. Katsuda, N. Hiraiwa, S. Doi, and E. Yasuda, “Improvement of Ride Comfort by Continuously Controlled Damper,” SAE Transactions, vol. 101, pp. 356-363, Feb. 1992.
[2]M. Appleyard and P. E. Wellstead, “Active Suspensions: Some Background,” IEE Proceeding - Control Theory and Applications, vol. 142, no. 2, pp. 123-128, Mar. 1995.
[3]D. Karnopp, M. J. Crosby, and R. A. Harwood, “Vibration Control Using Semi-Active Force Generators,” ASME Journal of Engineering Industry, vol. 96, no. 2, pp. 619-626, May 1974.
[4]S. Ikenaga, F. L. Lewis, L. Davis, J. Campos, M. Evans, and S. Scully, “Active Suspension Control Using a Novel Strut and Active Filtered Feedback: Design and Implementation,” in Proc. IEEE International Conference on Control Applications, Kohala Coast, HI, USA, vol. 2, pp. 1502-1508, Aug. 1999.
[5]林江蔚,「自調式適應控制於主動式懸吊系統之應用」,碩士論文,國立台灣科技大學,台北,2001。
[6]V. Ostasevicius, J. Sapragonas, A. Rutka, and D. Staliulionis, “Investigation of Active Car Suspension with Pneumatic Muscle,” in Proc. SAE International Body Engineering Conference & Exhibition and Automotive & Transportation Technology Conference, Paris, France, July 2002.
[7]W. K. N. Anakwa, D. R. Thomas, S. C. Jones, J. Bush, D. Green, G. W. Anglin, R. Rio, J. Sheng, S. Garrett, and L. Chen, “Development and Control of a Prototype Pneumatic Active Suspension System,” IEEE Transactions on Education, vol. 45, no. 1, pp. 43-49, Feb. 2002.
[8]B. L. J. Gysen, J. J. H. Paulides, J. L. G. Janssen, and E. A. Lomonova, “Active Electromagnetic Suspension System for Improved Vehicle Dynamics,” in Proc. IEEE Vehicle Power and Propulsion Conference, Harbin, China, pp. 1-6, Sep. 2008.
[9]M. A. Nekoui and P. Hadavi, “Optimal Control of an Active Suspension System,” in Proc. 14th International Power Electronics and Motion Control Conference, Metropol Lake Resort Ohrid, Macedonia, pp. T5-60 - T5-63, Sep. 2010.
[10]S. M. Fayyad, “Constructing Control System for Active Suspension System,” Contemporary Engineering Sciences, vol. 5, no. 4, pp. 189-200, Jan. 2012.
[11]W. Sun, H. Gao, and O. Kaynak, “Adaptive Backstepping Control for Active Suspension System with Hard Constraints,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 3, pp. 1072-1079, June 2013.
[12]J. Rubió-Massegú, F. Palacios-Quiñonero, J. M. Rossell, and H. R. Karimi, “Static Output-Feedback Controller Design for Vehicle Suspensions: An Effective Two-Step Computational Approach,” IET Control Theory & Applications, vol. 8, no. 15, pp. 1566-1574, Oct. 2014.
[13]C. Gohrle, A. Schindler, A. Wagner, and O. Sawodny, “Road Profile Estimation and Preview Control For Low-Bandwidth Active Suspension System,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2299-2310, Oct. 2015.
[14]王雪松、程玉虎、易建強,「電一氣位置伺服控制系統的研究進展」, 控制與決策,第二十二卷,第六期,第601-607頁,2007。
[15]K. Tanaka, Y. Yamada, M. Sakamoto, and S. Uchilado, “Model Reference Adaptive Control with Neural Network for Electro-Pneumatic Servo System,” in Proc. IEEE International Conference on Control Applications, Trieste, Italy, vol. 2, pp. 1130-1134, Sep. 1998.
[16]K. Tanaka, Y. Yamada, T. Satoh, A. Uchibori, and S. Uchikado, “Model Reference Adaptive Control with Multi-Rate Type Neural Network for Electro-Pneumatic Servo System,” in Proc. IEEE International Conference on Control Applications, Kohala Coast, HI, USA, vol. 2, pp. 1716-1721, Aug. 1999.
[17]R. Richardson, A. R. Plummer, and M. D. Brown, “Self-tuning Control of a Low-Friction Pneumatic Actuator Under the Influence of Gravity,” IEEE Transactions on Control Systems Technology, vol. 9, no. 2, pp. 330-334, Mar. 2001.
[18]施文凱,「應用基因-模糊控制於氣壓-壓電混合精密定位系統之研究」,碩士論文,台灣科技大學,台北,2001。
[19]黃建銘、白凱仁和施明璋,「速度回授補償於氣壓無桿缸伺服精密定位之研究」,第十八屆機械工程研討會,台北,2002。
[20]C. P. Chou and B. Hannaford, “Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles,” in Proc. IEEE International Conference on Robotics and Automation, San Diego, CA, vol. 1, pp. 281-286, May 1994.
[21]D. G. Caldwell, G. A. Medrano-Cerda, and C. J. Bowler, “Investigation of Bipedal Robot Locomotion using Pneumatic Muscle Actuators,” in Proc. IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, vol. 1, pp. 799-804, Apr. 1997.
[22]Y. L. Park, B. R. Chen, D. Young, L. Stirling, R. J. Wood, E. Goldfield, and R. Nagpal, “Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp. 4488-4495, Sep. 2011.
[23]L. M. Sui and S. Q. Xie, “A Model of Pneumatic Muscle Actuated Joint Using Linearized Method,” in Proc. 19th IEEE International Conference on Mechatronics and Machine Vision in Practice, Auckland, New-Zealand, pp. 414-419, Nov. 2012.
[24]P. Beyl, M. V. Damme, R. V. Ham, B. Vanderborght, and D. Lefeber, “Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1046-1056, June 2014.
[25]“氣壓元件介紹及實習” http://portal.ptivs.ptc.edu.tw/sys/lib/read_attach.php?id=7928, 2015.
[26]吳宗翰,「應用PID、類神經網路於主動式懸吊系統之控制研究」,碩士論文,國立雲林科技大學,雲林,2005。
[27]B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and Stability Analysis of Single-Input Fuzzy Logic Controller,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, no. 2, pp. 303-309, Apr. 2000.
[28]李寶仁、劉軍和楊鋼,「氣動人工肌肉系統建模與仿真」,機械工程學報,第三十九卷,第七期,第23-28頁,2003。
[29]Y. K. Lee and I. Shimoyama, “A Multi-Channel Micro Valve For Micro Pneumatic Artificial Muscle,” in Proc. 15th IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, pp. 702-705, Jan. 2002.
[30]Festo, “ Fluidic Muscle DMSP/MAS,” 2010.
[31]美商國家儀器股份有限公司台灣分公司, http://sine.ni.com, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top