跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何坤益
研究生(外文):He, Kuen-Yi
論文名稱:陡變熔拉微光纖干涉儀及其於應變力感測之應用
論文名稱(外文):Stretched abrupt-tapered micro fiber interferometers and its strain sensing applications
指導教授:陳逸寧
指導教授(外文):Chen, Yi-Ning
口試委員:崔祥辰呂海涵
口試委員(外文):Chui, Hsiang-ChenLu, Hai-Han
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:56
中文關鍵詞:微光纖干涉儀應變感測光纖元件
外文關鍵詞:Micro fiber interferometerStrain sensingFiber optics components
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
在本研究中,我們利用了兩段式熔拉製作一個陡變熔拉微光纖干涉儀(Stretched abrupt-tapered micro fiber interferometers, SATMFI),進行應變的感測以及溫度的特性量測。首先利用電極放電的方式,製作一個陡變熔拉光纖激發出高階纖芯模,再利用氫氣火焰將陡變熔拉光纖做均勻拉伸,使得纖芯模與纖殼模耦合產生干涉。
在實驗上,使用康寧標準單模光纖(Single mode fiber 28,SMF-28)與鉺鐿共摻光纖(Er/Yb codoped fiber, EYDF)來製作感測器並且比較不同的直徑。使用EYDF光纖製作的應變感測器,在直徑為2.8 μm時,干涉消光比可達18 dB,應變靈敏度可達7.71 nm/mɛ。另外我們也選擇SMF-28製作的感測器,在直徑為4.2 μm時應變靈敏度可達3.96 nm/mɛ,並且溫度在30 °C~70 °C時對於溫度不敏感。在本研究中我們提供了一種感測器,具有體積小,製作容易具有經濟效益。未來希望可以應用在房屋建設、機械設備、環境保持、地震預測與生物醫療。

In this study, we made a stretched abrupt-tapered micro fiber interferometers by two-step processing tapered fiber, in order to sense strain and measure temperature characteristics. Firstly, we fabricated an abrupt-tapered fiber by discharging electrode to excite higher order cladding mode and then used hydrogen flame to make abrupt fiber stretched, enabling the fiber core and high order cladding mode to recombine and generate interference.
In this experiment, by using Corning standard single-mode fiber (single mode fiber 28, SMF-28) and Erbium and Ytterbium co-doped fiber (Er/Yb codoped fiber, EYDF), we made sensors to compare results in different diameters. In case of using optic strain sensors made by EYDF fiber, with diameter of 2.8 μm, strain sensitivity reached up to 7.71 nm/mɛ, while using sensors made by SMF-28, with diameter of 4.2 μm, strain sensitivity reached 3.96 nm/mɛ and became temperature-insensitive from 30 to 70 degree Celsius. In this study, we provide a sensor with compact size, easy fabrication and cost efficiency. Hope in the future it will be widely applied in housing construction, machinery and equipment, environmental conservation, earthquake prediction and biomedical engineering.

摘要 I
ABSTRACT III
致謝 V
目錄 VII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 發展歷史 3
1-4 光纖式應變力感測器介紹 4
第二章 陡變熔拉光纖干涉儀 10
2-1 簡介 10
2-2 FMZI干涉原理 11
2-3 主動光纖與被動光纖之比較 15
第三章 實驗架構 17
3-1 陡變熔拉光纖簡介 17
3-2 製作陡變熔拉光纖 17
3-3 使用SATMFI做應變與溫度感測實驗架構 19
第四章 實驗數據與討論 20
4-1 陡變熔拉微光纖干涉儀之特性 20
4-2 SMF-28陡變熔拉微光纖干涉儀應變感測 25
4-3 SMF-28陡變熔拉微光纖干涉儀溫度特性量測 30
4-4 EYDF陡變熔拉微光纖干涉儀應變感測 33
4-5 EYDF陡變熔拉微光纖干涉儀溫度特性量測 35
第五章 結論與未來展望 38
5-1 結論 38
5-2 未來展望 38
參考文獻 40

[1] E. Harris, Y. Li, L. Chen, and X.i Bao “Fiber-optic Mach–Zehnder interferometer as a high-precision temperature sensor: effects of temperature fluctuations on surface biosensing” Applied Optics, Vol. 49, pp.5682-5685 (2010).

[2] A. Abang and D. J. Webb “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors” Optics Lett, Vol. 38, pp.1376-1378 (2013).

[3] Tao Qi, S. Xiao, J. Shi, Z. Zhou, M. Bi, P. Li “Simultaneous Strain and Temperature Measurement Using Compact Core-Offset Inter-Modal Interferometer With Embedded Fiber Bragg Grating” ACP, pp. ATh2A(2012).

[4] C. R. Liao, D. N. Wang and Ying Wang “Microfiber in-line Mach–Zehnder interferometer for strain sensing” Opt Lett, Vol. 38, pp. 757- 759(2013).

[5] S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang “High-sensitivity strain sensor based on in-fiber improved Fabry–Perot interferometer “Opt Lett. Vol. 38, pp. 2121- 2124(2014).

[6] B. Gu, W. Qi, J. Zheng, Y. Zhou, P. Pi. Shum, and F. Luan “Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber” Optics Lett, Vol. 39, pp. 22-25 (2014).

[7] Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng “Reflective fiber-optic refractometer based on a thin-core fiber tailored Bragg grating reflection” Optics Lett, Vol. 37, pp. 323-325 (2012).

[8] T1 Guo, A. Ivanov, C. Chen, and J. Albert “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling” Optics Lett, Vol. 33, pp. 1004-1006 (2008).

[9] Z. Tian, S. S-H. Yam, and H. P. Loock “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber” Optics Lett, Vol. 33, pp. 1105-1107 (2008).

[10] Z. Tian, M. Nix, and S. S-H. Yam “Laser beam shaping using a single-mode fiber abrupt taper” Optics Lett, Vol. 34, pp. 229-231 (2009).

[11] N. K. Chen, Z. Z. Feng, T. H. Yang, Y. N. Chen, and C. L. Lin “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing” CLEO: Science and Innovations, 2011 pp. CThQ2.

[12] N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. L. Lin, “Cellauar-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach-Zehcder interferometers” IEEE Photon Technl. Lett. 24, PP. 842-844(2012).

[13] Z. Z. Feng, T. H. Yang, N. K. Chen, Y. N. Chen, and Y. C. Chang, “Picoliter-volume glucose concentration microsensor based on miniature abrupt-tapered Mach-Zehcder interferometers:” SPIE/Photonics West 2012 conference, San Francisco, USA, Jan. 21-26, PP. 8218-6(2012).

[14] N. K. Chen, J. J. Wang, G. L. Cheng, W. H. Cheng, and P. P. Shum “Fiber torsion sensor with directional discrimination based on twist-induced circular birefringence in unbalanced Mach-Zehnder interferometer” CLEO: Applications and Technology (CLEO_AT) 2014 pp. JW2A.35.

[15] G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro “Optical microfiber mode interferometer for temperature-independent refractometric sensing” Opt Lett, Vol. 37, pp. 1974-1976 (2012).

[16] N. K. Chen, and Z. Z. Feng “Effect of gain-dependent phase shift for tunable
abrupt-tapered Mach–Zehnder interferometers” Optics Lett, Vol. 35, pp. 2109-2111 (2010).

[17] S. C. Fleming and T. J. Whitley “Measurement and analysis of pump-dependent refractive index and dispersion effects in erbium-doped fiber amplifiers” IEEE J. Quantum Electron, Vol. 32, pp. 1113-1121(1996).

[18] Z. Z. Feng, N. K. Chen, and S. K. Liaw “Tunable Mach–Zehnder interferometers with high extinction ratios using abrupt tapers in Er/Yb codoped fiber” OECC 2010, Janpan, 8P-23(2010).

[19] N. K. Chen,T. H. Yang, Y. N. Chen, Z. Y. Chen, and S. K. Liaw “High sensitivity tapered fiber Mach-Zehnder interferometer with optical attractive near-field force for active microsensing” CLEO: Applications and Technology (CLEO_AT) pp. JW2A.64(2013).

[20] G. Rajan, M. Y. M. Noor, N. H. Lovell, E. Ambikaizrajah, G. Farrell, and G. D Peng “Polymer micro-fiber Bragg grating” Optics Lett, Vol. 38, pp. 3359-3362 (2013).

[21] W. Shin, T.J. Ahn, Y.L. Lee, B.-A. Yu, and Y.C. Noh “Highly sensitive strain and bending sensor based on a fiber Mach-Zehnder interferometer in photonic crystal fiber” Conference on Lasers and Electro-Optics (CLEO) pp. JWA4(2010 ).

[22] J. Zhou, C Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer” Optics Express, Vol. 22, pp. 1680-1686 (2014).

[23] M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos and O. Frazão “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber” Optics Express, Vol. 20, pp. 21946-21952 (2012).

[24] N. K. Chen, K. Y. Lu, and C. Lin “Asymmetric fiber Michelson interferometer with a spatial mode beating arm for moving direction determination” CLEO: Science and Innovations (CLEO_SI) pp. CM4B.7 (2012).

[25] N. K. Chen, K. Y. Lu, and Y. H. Chang “Wavelength-beat integrated micro Michelson fiber interferometer based on core-cladding mode interferences for real-time moving direction determination“CLEO: Applications and Technology (CLEO_AT) pp. ATh4K.5(2013).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top