跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐冠錺
研究生(外文):Guan-Fang Xu
論文名稱:碳奈米螺旋線圈場發射陰極 氮摻雜及基板圖型化對壽命提升之研究
論文名稱(外文):Improvement of Cabon Nanocoil Field-emission-cathode Life using Nitrogen-Doping and Patterning
指導教授:劉益銘
指導教授(外文):Yih-Ming Liu
口試委員:葛明德蒲念文李元堯游孟潔
口試委員(外文):Ming-Der GerNen-Wen PuYuan-Yao LiMeng-Jey Youh
口試日期:2014-07-10
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:場發射燈源碳奈米螺旋線圈碳氮鍵結陰極構型化
外文關鍵詞:Field emissionCarbon nanocoilCarbon-nitrogen bondPattern with cathode wires
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對場發射燈源之陰極燈絲的壽命進行改善,主要方法為進行碳材料的改質,在碳材料結構中摻雜氮原子以形成碳氮鍵結,此可增加碳材之場發射效率,以達到提升壽命的效果。而形成碳氮鍵結可用兩種方法,方法一為將碳材料置於氮源氣體中再次高溫後處理,利用高溫使氨氣裂解並進行碳氮鍵結的嫁接,此法可有效提升其場發射效率。研究結果顯示隨著後處理溫度升高,奈米碳材中碳氮鍵結比例增多,但碳材也有耐溫的極限値,當溫度太高時碳材會被嚴重燒毀,因此最佳後處理溫度為700℃,其氮原子的含量可達3.92%。方法二為在熱裂解化學氣相沉積製程中摻入氨氣成長奈米碳材料,希望在成長碳材的同時也形成碳氮鍵結,使得碳奈米材料的整體結構皆有氮原子的嫁接,如此可增加碳結構中氮原子的比例。但研究結果顯示,此製程並無發現碳氮鍵結,且場發射測試結果顯示,有無摻入氨氣成長之奈米碳材場發射電流值差異不大,因此推測摻入氨氣並未達到在奈米碳材中形成碳氮鍵結之效果。
在高溫後處理提升陰極燈絲之效率後,本研究針對場發射燈具於場發射測試時所產生的陰極燈絲損害現象進行損害防制的研究,試圖以不同表面構型之基材成長奈米碳材之後,進行基材表面構型對場發射損害影響之探討。研究中增加導電層於陰極燈絲的表面,再將導電層圖形化後成長奈米碳材作為場發射燈絲,觀察構型化之導電層對燈絲損傷之影響。研究結果顯示,原不鏽鋼基板與表面鍍滿導電層的基材所成長奈米碳材之場發射燈絲於低真空下場發射測試之損傷情況差異不大,皆為表面碳材受損嚴重且呈大面積受損模式。而將基材添加圖形化導電層表面結構,選擇性成長奈米碳材所製作之場發射燈絲,其奈米碳材層的損傷較前兩者為輕微,無奈米碳材成長之導電層上則有被離子轟擊的損傷點,而奈米碳材層皆能保持原形貌,證實此種圖形化表面微結構能有效降低陰極燈絲之損耗。

Using modification of the nano carbonaceous emitters by nitrogen-doping to improve the efficiency and life of field emission (FE) cathode wires was studied in this thesis. This N-doping forms carbon-nitrogen bonds in the carbon nano-coils (CNCs) which can increase the FE efficiency of the CNC emitters. There are two ways used for forming carbon-nitrogen bonds into the CNCs in this thesis, one is post treatment of the CNCs in the ammonia atmosphere at high temperature. The pyrolysis of ammonia at high temperature grafted nitrogen atoms into CNCs and the carbon-nitrogen bonds increased the FE efficiency of CNC emitters. The result shows that the content of carbon-nitrogen bonds increased as the post treatment temperature increased. However, CNCs on the cathode wires burned when the temperature is too high. The optimum temperature for post treatment is 700℃ and the content of nitrogen atoms can reach 3.92% which was calculated from XPS analysis.
The other way to form carbon-nitrogen bonds into the CNCs is synthesizing CNCs with the carbon source gas mixed with ammonia gas. We hoped this method can simultaneously synthesize CNCs and form carbon-nitrogen bonds in the whole CNC structure. However, no carbon-nitrogen bond was found in the synthesized CNCs. The FE test didn’t show apparent difference on the I-V curves between the CNCs synthesized with or without ammonia gas. On the basis of the evidence we deduced that synthesizing CNCs in the ammonia atmosphere has no effect on forming carbon-nitrogen bonds.
After promoting the FE efficiency of our CNC cathode wires, the damage prevention of the cathodes during FE process was evaluated in this thesis. Before CNC growth, the stainless steel (SS) wires were coated with a conductive ceramic layer or formed a surface configuration pattern with a conductive layer. These wires were deposited with a layer of CNCs in the thermal chemical vapor deposit furnace and then did the FE test at low vacuum environment to evaluate the effect of conductive and surface configuration on the cathode damage. The result shows that there was no big difference on the damage of the CNC cathodes prepared from the pristine or conductive layer coated SS wires. Both cathodes showed a large-area and serious damage; meanwhile, the cathode with pattern of conductive layer only damaged slightly at the CNC layer and the ion bombardment damage concentrated in the area of conductive layer where has no growth of CNCs . The CNC emitters on the cathodes with surface configurations kept original morphology after the FE test. It indicates that forming a surface configuration pattern with a conductive layer can effectively reduce the loss of cathode filament.

誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
1. 緒論 1
1.1 前言 1
1.2 研究目的 3
2.文獻回顧 5
2.1場發射原理與應用 5
2.1.1電子發射種類 5
2.1.2場發射原理 6
2.1.3功函數 7
2.1.4幾何形貌對陰極電場效應 8
2.1.5場發射燈具發展與簡介 8
2.1.6碳奈米螺旋線圈應用於陰極的優勢 11
2.2 奈米碳材的發展簡介 13
2.2.1碳奈米螺旋線圈的成長機制 15
2.2.2碳奈米螺旋線圈的觸媒 18
2.2.3碳奈米螺旋線圈的製程方式 20
2.3 場發射陰極提升壽命與效率方式 21
2.3.1碳材料嫁接碳氮鍵結對場發射特性的影響 21
2.3.2碳材料形成碳氮鍵結之分析方式 22
2.3.3基板圖型化對陰極的影響 26
3.研究方法與步驟 29
3.1 研究方法 29
3.2 實驗步驟 31
3.2.1奈米碳螺旋線圈燈絲於氮源氣氛下後處理之實驗流程 31
3.2.2摻入氨氣成長奈米碳螺旋線圈之實驗步驟 32
3.2.3陰極燈絲基材微結構之實驗步驟 32
3.3化學氣相沉積設備 33
3.4真空場發射測試 34
3.5檢測分析儀器 35
4.結果與討論 37
4.1奈米碳螺旋線圈燈絲於氮源氣氛下後處理之特性研究 37
4.1.1後處理溫度對奈米碳螺旋線圈之影響 37
4.1.2後處理氨氣濃度改變對奈米碳螺旋線圈之影響 46
4.1.3小結 52
4.2奈米碳螺旋線圈燈絲於摻入氨氣下成長之特性研究 53
4.2.1氨氣摻入流量對陰極燈絲之影響 53
4.2.2摻入氨氣流量對鈀觸媒於600℃成長碳材之影響 57
4.2.3小結 61
4.3不同基材微構型所成長奈米碳螺旋線圈場發射特性 61
4.3.1CNC@ 304-SS對場發射特性之影響 63
4.3.2CNC@Cr-C/ 304-SS對場發射特性之影響 67
4.3.3CNC@Cr-C pattern/ 304-SS對場發射特性之影響 74
4.3.4小結 77
5.結論 78
參考文獻 79
自傳 85

[1]鍾坤儒,“奈米碳材製備場發射燈源製程之研究”,碩士學位論文,國防大學中正理工學院應用化學研究所,桃園,第9頁,2010。
[2]甘明吉,“奈米尺寸碳材料之電子發射特性”,博士論文,國立成功大學材料科學及工程研究所,臺南,第35-42頁,2003。
[3]羅吉宗,場發射技術與應用,大同公司研究報告,台北,第5頁,2009。
[4]Modinos, A.,“Electron emission from Free-Electron Metal, in Field, Thermionic, and Second Electron Emission Spectroscopy, ” Plenum Press, Chapter 1, pp. 1-34, 1984.
[5]Liang, S. D. and Chen, L.,“Generalized Fowler-Nordheim Theory of FieldEmission of Carbon Nanotubes,” Physical Review Letters, Vol. 101, pp. 027602-027604, 2008.
[6]Chiu, P. W. and Roth, S.,“Transition from Direct Tunneling to Field Emissionin Carbon Nanotube Intramolecular Junctions,”Applied Physics Letters, Vol. 92, pp. 042107-0-042107-3, 2008.
[7]Bonard, J. M., Stockli, T., Noury, O., and Chatelain, A.,“Field Emission from Cylindrical Carbon nanotube Cathodes:Possibilities for Luminescent Tubes,”Applied physics letters, Vol. 78, No. 18, pp. 2775-2777, 2001.
[8]Huang, J. X., Chen, Jun., Deng, S. Z., She, J. C., and Xu, N. S. ,“Field-Emission Fluorescent Lamp using Carbon Nanotubes on a Wire-Type Cold Cathode and A Reflecting Anode,” Journal of Vacuum Science and Technology B, Vol. 26, No. 5, pp. 1700-1704, 2008.
[9]Fu, W., Liu, P., Tang, J., Liu, L., and Fan, S.,“Spherical Field Emission Cathode Based on Carbon Nanotube Paste and Its Application in Luminescent Bulbs,”Journal of Vacuum Science and Technology B, Vol. 26, No. 4, pp. 1404-1406, 2008.
[10] Wei, Y., Xiao, L., Zhu, F., Liu, L., Tang, J., Liu, P., and Fan, S. S.,“Cold Linear Cathodes with Carbon Nanotube Emitters and Their Application in Luminescent Tubes,”Nanotechnology, Vol. 18, pp. 325702-325707, 2008.
[11]Lee, S. M., Kim, W. J., and Kim, Y. H.,“Transparent Field Emitters with Light Reflector,” Journal of Physica E, Vol. 43, pp. 405-409, 2010.
[12]Pan, L. J., Hayashida, T. C., Zhang M., and Nakayama, Y.,“Field Emission Properties of Carbon Tubule Nanocoils,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, pp. l235-l237, 2001.
[13]Hokushin, S., Pan, L. J., Konishi, Y., Tanaka, H., and Nakayama, Y.,“Field Emissio Properties and Structural Changes of a Stand-Alone Carbon Nanocoil,” 74 Japanese Journal of Applied Physics, Vol. 40, No. 3B, pp. l235-l237, 2001.
[14]Pan, L. J., Konishi, Y., Tanaka, H., Suekane, O., Nosaka T., and Nakayama, Y.,“Effect of Morphology on Field Emission Properties of Carbon Nanocoils and Carbon Nanotubes,” Japanese Journal of Applied Physics, Vol. 44, No. 4A, pp. 1652-1654, 2005.
[15]Sung, Y. W., Ok, G. J., Kim, J. W., Lee, M. S., Yeon, C. S., Lee, Y. H., and Kim, H. Y.,“Synthesis and Field Emission Characteristics of Carbon Nanocoils with a High Aspect Ratio Supported by Copper Micro-Tips,” Nanotechnology, Vol. 18, No. 24, p. 245603, 2007.
[16]Zhang, Z. J., He, P. G., Sun, Z., Feng, T., Chen, Y. W., Li, H. l., and Tay B. K.,“ Growth and Field Emission Property of Coiled Carbon Nanostructure Usingcopper as Catalyst,” Journal of Applied Surface Sciences, Vol. 94, No. 4, p. 2325, 2009.
[17]Pan L. J., Hayashida T. C., Zhang M., and Nakayama Y.,“Field Emission Properties of Carbon Tubule Nanocoils,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, pp. l235-l237, 2001.
[18]Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 7, pp. 56-58, 1991.
[19]Motojima, S., Asakura, S., Hirata, M., and Iwanaga, H.,“Effect of Metal Impurities on the Growth of Micro-Coiled Carbon Fibres by Pyrolysis of Acetylene,” Materials Science and Engineering B, Vol. 34, pp. 9-11, 1995.
[20]Motojima, S., Noda, Y., Hoshiya, Y., and Hishikawa, Y., “Electromagnetic Wave Absorption Property of Carbon Microcoils in 12-110 GHz Region,” Journal of Applied Physics, Vol. 94, No. 4, p. 2325, 2003.
[21]Yang, S., Chen, X., and Motojima, S., “Morphology of Zigzag Carbon Nanofibers Prepared by Catalytic Pyrolysis of Acetylene Using Fe-Group Containing Alloy Catalysts, ” Diamond and Related Materials, Vol. 13, pp. 85-92, 2004.
[22]Yang, S., Chen, X., Motojima, S., and Ichihara, M., “Morphology and Microstructure of Spring-Like Carbon Microcoils/Nanocoils Prepared by Catalytic Pyrolysis of Acetylene Using Fe-Containing Alloy Catalysts,” Carbon, Vol. 43, pp. 827-834, 2005.
[23]Nobuharu, O., Shoji, H., Toshiki, G., and Yoshikayzu, N., “Synthesis of Carbon Tubule Nanocoils Using Fe-In-Sn-O Fine Particles as Catalysts.” J. Phys. Chem. B,Vol. 109, 2005.
[24]Ding, D. Y., Wang, J. N., Cao, Z. L., Dai, J. H., and Yu, F.,“Ni-Ni3P Alloy Catalyst for Carbon Nanostructures,” Chemical Physics Letters, Vol. 371, pp.333-336, 2003.
[25]Baker, R. T. K., Braber, M. A., and Harries, P. S.,“Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene,” Journal of Catalysis, Vol. 26, pp. 51-62, 1972.
[26]Wen, Y., and Shen, Z., “Synthesis of Regular Coiled Carbon Nanotubes by Ni-Catalyzed Pyrolysis of Acetylene and a Growth Mechanism Analysis,” Carbon, Vol. 39, pp. 2369-2386, 2001.
[27]Lee, S. Y., Yamada, M., and Miyake, M.,“Synthesis of Carbon Nanotubes and Carbon Nanofilaments over Palladium Supported Catalysts,” Science and Technology of Advanced Materials, Vol. 6, pp. 420-426, 2005.
[28]Reyhani, A., Mortazavi, S. Z., Akhavan, O., Moshfegh, A. Z., and Lahooti, Sh.,“Effect of Ni, Pd and Ni–Pd Nano-Islands on Morphology and Structure of Multi-Wall Carbon Nanotubes,” Applied Surface Science, Vol. 253, pp. 8458-8462, 2007.
[29]陳文丁,“奈米貴金屬粒子於噴墨列印金屬導線之應用”,碩士學位論文國防大學中正理工學院應用化學研究所,桃園,第35-39頁,2004。
[30]陳弘倫,“以奈米把觸媒成長奈米碳材場發射陰極及場發射燈具之製作",碩士論文,國防大學理工學院化學與材料工程學系,桃園,第45-63頁,2012。
[31]江智程,“場發射燈具陰極燈絲製程及其損壞機制分析",碩士論文,國防大學理工學院化學與材料工程學系,桃園,第38-41頁,2013。
[32]Amaratunga, G. A. J., and Silva, S. R. P. , “Nitrogen Containing Hydrogenated Amorphous Carbon for Thin-film Field Emission Cathodes Gehan,” American Institute of Physics, Vol. 68, p.p.2529-2531, 1996.
[33]Gohela, A., Chinb, K.C., Zhua, Y.W., Sowa, C.H., and Weea, A.T.S., “Field Emission Properties of N2 and Ar Plasma-Treated Multi-Wall Carbon Nanotubes,” Carbon, Vol. 43, pp. 2530–2535, 2005.
[34]Chizaria, K.,Venaa A., Laurentiusb, L., and Sundararaja, U., “The Effect of Temperature on The Morphology and Chemical Surface Properties of Nitrogen-Doped Carbon Nanotubes,” Carbon,Vol 68, pp. 369-379, 2014.
[35]Liu, Y., Jin Z., Wang, J., Cui R., Sun, H., Peng, F., Wei, L. , Wang, Z., Liang, X., Peng L., and Li Y., “ Nitrogen-Doped Single-Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties,” Adv. Funct. Mater,Vol. 21, pp. 986-992, 2011.
[36]Liu, W.C., Lin, H.-K., Chen, Y.L., Lee, C.Y., and Chiu, H.T., “Growth of Carbon Nanocoils from K and Ag Cooperative Bicatalyst Assisted Thermal Decomposition of Acetylene,” ACS Nano,Vol. 4, Issue 7 , pp. 4149-4175, 2010.
[37]Lee, C.J., Lyu, C.S.C., Kim, H.-W., Lee, J. H., Cho, K. I., “Synthesis of Bamboo-shaped Carbon–nitrogen Nanotubes using C2H2–NH3–Fe(CO)5 System,” Chemical Physics Letters, Vol. 359, p.p. 115-120, 2002.
[38]Chizaria, K., Venaa, A., Laurentiusb, L., and Sundararaja, U., “The Effect of Temperature on The Morphology and Chemical Surface Properties of Nitrogen-Doped Carbon Nanotubes,” Carbon,Vol 68, pp. 369–379, 2014.
[39]Liu Y., Jin Z , Wang J., Cui R., Sun H., Peng F., Wei L. , Wang Z., Liang X., Peng L., and Li Y., “ Nitrogen-Doped Single-Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties,” Adv. Funct. Mater,Vol. 21, pp. 986–992, 2011.
[40]Jung, Y.J., Son, G.H., Park, J.H., Kim, Y.W., Berdinsky, A. S., Yoo, J.B., and Park, C.Y.,“Fabrication and Properties of Under-Gated Triode with CNT Emitter for Flat Lamp,"Diamond & Related Materials, Vol. 14, pp. 2109-2112, 2005.
[41]Cho, W.-S., Lee, H.-J., Lee, Y.-D., Park, J.-H., Kim, J.-K., Lee, Y.-H., and Ju, B.-K., “Carbon Nanotube-Based Triode Field Emission Lamps using Metal Meshes with Spacers,"Ieee Electron Devjic Lerrers, Vol. 28, NO. 5, pp. 386-388, 2007.
[42]Niemann, D. L., Silan, J., Killian, J. L., and Schwanfelder, K. R., “Carbon Nanotube Field Emission Devices with Integrated Gate for High Current Applications ,"IEEE, Vol. 8, pp. 457-459, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top