|
1.Valdez, I.H., et al., Major salivary gland function in patients with radiation-induced xerostomia: flow rates and sialochemistry. Int J Radiat Oncol Biol Phys, 1993. 25(1): p. 41-7. 2.Vissink, A., et al., Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med, 2003. 14(3): p. 199-212. 3.Jen, Y.M., et al., Dramatic and prolonged decrease of whole salivary secretion in nasopharyngeal carcinoma patients treated with radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006. 101(3): p. 322-7. 4.Vissink, A., et al., Acute irradiation effects on morphology and function of rat submandibular glands. J Oral Pathol Med, 1991. 20(9): p. 449-56. 5.Gustafsson, H., L. Franzen, and R. Henriksson, Regeneration of parotid acinar cells after high radiation doses. A morphological study in rat. Acta Oncol, 1995. 34(2): p. 193-7. 6.Valdes Olmos, R.A., et al., Scintigraphic assessment of salivary function and excretion response in radiation-induced injury of the major salivary glands. Cancer, 1994. 73(12): p. 2886-93. 7.Jen, Y.M., et al., Parotid gland-sparing 3-dimensional conformal radiotherapy results in less severe dry mouth in nasopharyngeal cancer patients: a dosimetric and clinical comparison with conventional radiotherapy. Radiother Oncol, 2005. 75(2): p. 204-9. 8.Sreebny, L.M., et al., The preparation of an autologous saliva for use with patients undergoing therapeutic radiation for head and neck cancer. J Oral Maxillofac Surg, 1995. 53(2): p. 131-9. 9.Nagler, R.M., et al., Long-term salivary effects of single-dose head and neck irradiation in the rat. Arch Oral Biol, 1998. 43(4): p. 297-303. 10.Coppes, R.P., A. Vissink, and A.W. Konings, Comparison of radiosensitivity of rat parotid and submandibular glands after different radiation schedules. Radiother Oncol, 2002. 63(3): p. 321-8. 11.Baum, B.J., Principles of saliva secretion. Ann N Y Acad Sci, 1993. 694: p. 17-23. 12.Nakamoto, T., et al., Functional and molecular characterization of the fluid secretion mechanism in human parotid acinar cells. Am J Physiol Regul Integr Comp Physiol, 2007. 292(6): p. R2380-90. 13.von Zastrow, M. and J.D. Castle, Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J Cell Biol, 1987. 105(6 Pt 1): p. 2675-84. 14.Turner, R.J. and H. Sugiya, Understanding salivary fluid and protein secretion. Oral Dis, 2002. 8(1): p. 3-11. 15.Agre, P., The aquaporin water channels. Proc Am Thorac Soc, 2006. 3(1): p. 5-13. 16.King, L.S. and P. Agre, Pathophysiology of the aquaporin water channels. Annu Rev Physiol, 1996. 58: p. 619-48. 17.Magni, F., et al., Proteomic knowledge of human aquaporins. Proteomics, 2006. 6(20): p. 5637-49. 18.Agre, P. and D. Kozono, Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett, 2003. 555(1): p. 72-8. 19.Kosugi-Tanaka, C., et al., Protein kinase A-regulated membrane trafficking of a green fluorescent protein-aquaporin 5 chimera in MDCK cells. Biochim Biophys Acta, 2006. 1763(4): p. 337-44. 20.Wellner, R.B., et al., Modifying the NH2 and COOH termini of aquaporin-5: effects on localization in polarized epithelial cells. Tissue Eng, 2005. 11(9-10): p. 1449-58. 21.Verkman, A.S., Aquaporins: translating bench research to human disease. J Exp Biol, 2009. 212(Pt 11): p. 1707-15. 22.Ishibashi, K., S. Hara, and S. Kondo, Aquaporin water channels in mammals. Clin Exp Nephrol, 2009. 13(2): p. 107-17. 23.Matsuzaki, T., et al., Immunolocalization of the water channel, aquaporin-5 (AQP5), in the rat digestive system. Arch Histol Cytol, 2003. 66(4): p. 307-15. 24.Tsubota, K., et al., Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjogren's syndrome. Lancet, 2001. 357(9257): p. 688-9. 25.Ma, T., et al., Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem, 1999. 274(29): p. 20071-4. 26.Raina, S., et al., Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem, 1995. 270(4): p. 1908-12. 27.Delporte, C. and S. Steinfeld, Distribution and roles of aquaporins in salivary glands. Biochim Biophys Acta, 2006. 1758(8): p. 1061-70. 28.Ishikawa, Y., et al., Aquaporin-5 water channel in lipid rafts of rat parotid glands. Biochim Biophys Acta, 2006. 1758(8): p. 1053-60. 29.Ishikawa, Y., et al., Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am J Physiol Cell Physiol, 2005. 289(5): p. C1303-11. 30.Ishikawa, Y., et al., Molecular mechanisms and drug development in aquaporin water channel diseases: the translocation of aquaporin-5 from lipid rafts to the apical plasma membranes of parotid glands of normal rats and the impairment of it in diabetic or aged rats. J Pharmacol Sci, 2004. 96(3): p. 271-5. 31.Rosin, A., [Pilocarpine. A miotic of choice in the treatment of glaucoma has passed 110 years of use]. Oftalmologia, 1991. 35(1): p. 53-5. 32.Takakura, K., et al., Effect of cevimeline on radiation-induced salivary gland dysfunction and AQP5 in submandibular gland in mice. Bull Tokyo Dent Coll, 2007. 48(2): p. 47-56. 33.Konings, A.W., R.P. Coppes, and A. Vissink, On the mechanism of salivary gland radiosensitivity. Int J Radiat Oncol Biol Phys, 2005. 62(4): p. 1187-94. 34.Takagi, K., et al., Secretion of saliva in X-irradiated rat submandibular glands. Radiat Res, 2003. 159(3): p. 351-60. 35.Li, Z., et al., Decreased saliva secretion and down-regulation of AQP5 in submandibular gland in irradiated rats. Radiat Res, 2006. 165(6): p. 678-87. 36.Paardekooper, G.M., et al., Radiation-induced apoptosis in relation to acute impairment of rat salivary gland function. Int J Radiat Biol, 1998. 73(6): p. 641-8. 37.Coppes, R.P., et al., Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists. Br J Cancer, 2001. 85(7): p. 1055-63. 38.Dorr, W. and J.H. Hendry, Consequential late effects in normal tissues. Radiother Oncol, 2001. 61(3): p. 223-31. 39.Borok, Z. and A.S. Verkman, Lung edema clearance: 20 years of progress: invited review: role of aquaporin water channels in fluid transport in lung and airways. J Appl Physiol, 2002. 93(6): p. 2199-206. 40.O'Connell, A.C., Natural history and prevention of radiation injury. Adv Dent Res, 2000. 14: p. 57-61. 41.Abok, K., et al., Morphologic and histochemical studies on the differing radiosensitivity of ductular and acinar cells of the rat submandibular gland. Virchows Arch B Cell Pathol Incl Mol Pathol, 1984. 45(4): p. 443-60. 42.Choi, J.H., et al., Apoptosis and Expression of AQP5 and TGF-beta in the Irradiated Rat Submandibular Gland. Cancer Res Treat, 2009. 41(3): p. 145-54. 43.Asari, T., K. Maruyama, and H. Kusama, Salivation triggered by pilocarpine involves aquaporin-5 in normal rats but not in irradiated rats. Clin Exp Pharmacol Physiol, 2009. 36(5-6): p. 531-8. 44.Chetty, K.G., et al., Mechanisms underlying decreased protein and RNA synthesis in the rat spleen following whole-body X-irradiation. Strahlentherapie, 1976. 151(3): p. 228-35. 45.Zeilstra, L.J., et al., Radiation induced cell loss in rat submandibular gland and its relation to gland function. Int J Radiat Biol, 2000. 76(3): p. 419-29. 46.Furukawa, Y., et al., Neuromyelitis optica associated with myasthenia gravis: characteristic phenotype in Japanese population. Eur J Neurol, 2006. 13(6): p. 655-8. 47.Yi, E.S., et al., Radiation-induced lung injury in vivo: expression of transforming growth factor-beta precedes fibrosis. Inflammation, 1996. 20(4): p. 339-52. 48.He, X., et al., Polarized distribution of key membrane transport proteins in the rat submandibular gland. Pflugers Arch, 1997. 433(3): p. 260-8. 49.Konings, A.W., et al., Volume effects and region-dependent radiosensitivity of the parotid gland. Int J Radiat Oncol Biol Phys, 2005. 62(4): p. 1090-5. 50.Cotteleer, F., et al., Three-dimensional dose distribution for partial irradiation of rat parotid glands with 200kV X-rays. Int J Radiat Biol, 2003. 79(9): p. 689-700.
|