跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張宜儒
研究生(外文):Yi-Ru Chang
論文名稱:應用雙能量電腦斷層辨識尿酸結石之方法與劑量抑低策略探討
論文名稱(外文):Strategy of application of dual energy computed tomography to identify of uric acid stones and dose reduction
指導教授:陳拓榮陳拓榮引用關係
指導教授(外文):Tou-Rong Chen
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:119
中文關鍵詞:雙能量電腦斷層尿酸結石假體有效劑量
外文關鍵詞:dual energycomputed tomographyurinary stonephantomeffective dose
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的:
本實驗的目的是應用雙能量電腦斷層儀掃描結石,探討可辨識尿酸結石的分析方法,藉由參考管電流時間積(Ref. mAs)的設定,探討造成受檢者有效劑量抑低的操作設定與分析方法的準確性。
材料與方法:
本實驗一共收集132顆尿路結石。結石被放置於直徑分別16及32公分的壓克力圓柱假體和有效體寬分為25及38公分的類橢圓聚乙烯假體,以模擬結石於人體中。使用Siemens雙源雙能(100/Sn 140 kVp)的電腦斷層進行掃描,以Siemens後處理分析系統之kidney stone運算法重組成腎結石影像,區分尿酸及非尿酸結石。另外,實驗影像也以FBP重組,可得兩組能量影像,經由CT工作站圈選ROI,得到兩組對應的CT值,使用DE ratio和象限法這二種方法來辨識是否為尿酸結石。研究也探討由雙能量重組單能量影像的特性,評估尿酸結石與非尿酸結石的差異,分析計算其準確性、靈敏度和特異性。以上方法均搭配三到四種不同參考劑量掃描水平。
結果:
尿酸結石相較於其它種類結石,在高低管電壓下的CT值接近,DE ratio小於1.13。使用kidney stone運算法來重組影像,將兩組能量(100/Sn 140 kVp)的Ref. mAs設定在53/41 mAs,仍有98%的準確性。而使用象限法來辨識尿酸結石,可發現ROI之CT值分布於第三象限,即Sn 140 kVp影像CT值小於648 HU、100 kVp影像CT值小於737 HU,且當Ref. mAs設定在27/21 mAs仍有90%的準確性。在重建單能量影像方法探討,本文發現在60 keV~80 keV這個區段,尿酸結石與非尿酸結石斜率二者存在最大的差異,本研究利用此區段尿酸結石斜率近於零(範圍在-3.3~-7.2 HU/keV)的特性辨識尿酸結石,其準確性達92%、靈敏度為100%、特異性也達92%,且經ROC curve和AUC分析,可發現在降低劑量後,使用700~800 HU為閾值的尿酸結石辨識力並無差別。
結論:
使用雙源雙能電腦斷層後處理辨識尿酸結石之準確率為98%,較人為圈選佳。結石的大小厚薄,可能左右影像CT值。將象限法的中心點設定為(648, 737),使用第三象限判斷尿酸結石,可降低有效劑量並保持相當的準確度。模擬得之單能量60-80 keV區段,以其斜率判斷,有著最佳尿酸結石辨識率,且尿酸結石與非尿酸結石在50 keV時有著最大的差異,值得進一步研究探討與廠商軟體的開發。藉由縮短掃描長度與抑低Ref. mAs,可將有效劑量抑低至IVP或KUB的等級。


Purpose
The purpose of this study is using dual-energy computed tomography (DECT) to evaluate different analysis methods of identification for uric acid stones. By adjustment of the reference tube current time product (Ref. mAs), the effective dose reduction of patient and the identified accuracy of methods were assessed.
Material & Method
A total of 132 urinary stones were collected in the study. Stones are placed in the CTDI acrylic phantoms with 16 and 32 cm diameter and in the 25 and 38 cm elliptic-like polyethylene phantoms to simulate stones in the human body. Phantoms were scanned by Siemens dual-source dual-energy, 100 / Sn 140 kVp, and the images reconstructed automatically by the program, a built-in analysis software in CT workstation, that can distinguish uric acid stone by a color-coded method. In addition, the images were reconstructed by the filtered back projection method. ROIs of two energy images for 100 and Sn140 kVp were manual selected directly on CT monitor of workspace and their corresponding CT numbers were recorded. The CT number ratio (DR ratio) and quadrant methods were used to identify uric acid stones from the images produced by three to four reference dose levels. The monoenergetic images also reconstructed to assess stones. The analysis items include accuracy, sensitivity and specificity.
Result
The CT numbers of uric acid stones are similar compared to other kinds of stones in two tube voltages. The DE ratio is less than 1.13 and it agrees with other studies. Using the Ref. mAs of 53/41 mAs(100 / Sn 140 kVp) to scan and the kidney stone program to reconstruct the image and the accuracy is 98%. The quadrant method that are the CT no. less than 648 HU for Sn 140 kVp and 737 HU for 100 kVp, with the scan of the Ref. mAs setting at 27/21 mAs still had 90% accuracy. In monoenergetic images, the range of 60 to 80 keV is optimized to distinguish the uric acid stones and non-uric acid stones. In the monoenergetic method, the slope of uric acid stone was in the range of -3.3 ~ -7.2 HU / keV. The accuracy was more than 92%, sensitivity was 100%, and the specificity was more than 92% of identification of uric acid stones. By analysis of ROC curve and AUC can be found there are undifferentiated by using lower scanning dose parameters setting to identify uric acid or non- uric acid when the threshold set at 700 ~ 800 HU value .

Conclusion
Using the analysis by the Siemens DECT kidney stone program, the accuracy of uric acid stone is 98% and is better than that identified by personal judgment. Stone size and its thickness could affect the CT number of voxel. The quadrant method, setting the center at (648, 737) and using the third quadrant to identify uric acid stones, can reduce the effective dose and maintain a considerable accuracy. The range of 60 to 80 keV of monoenergetic images presented the best accuracy of uric acid stones by analyzing the slope. Uric acid and non-uric acid stones have the largest difference at 50 keV images. The monoenergetic method may be an innovative method that is worthy to study and develop application software by manufacturers. By the strategy of reducing scan length and Ref. mAs, the effective dose can be decreased to the dose level of KUB or IVP examination.


目錄 IV
表目錄 VII
圖目錄 X
中文摘要 XII
英文摘要 XIII
謝誌 XV
第一章:緒論 1
一、研究背景 1
1.泌尿系統結石簡介 1
2.尿酸結石在雙能量電腦斷層下特徵 3
二、研究目的 5
三、實驗流程 6
第二章:研究材料 8
一、臨床樣本收集 8
1.結石收集 8
2.臨床患者體型收集 8
二、電腦斷層與腎結石檢查 8
1.雙源電腦斷層 8
2.腎結石檢查 10
2.1腎結石檢查 10
2.2 Topogram掃描參數 10
2.3西門子電腦斷層腎結石掃描參數 10
三、診斷型X光機、腎-輸尿管-膀胱攝影與靜脈腎盂造影 11
1.一般數位X光機 11
2.腎-輸尿管-膀胱攝影 11
3.靜脈腎盂造影 11
四、假體 12
1.擬腎臟腹部假體 12
2. CTDI假體 13
3.擬人型假體 14
3.1.熱發光劑量計 14
第三章:研究方法 15
一、劑量評估 15
1.擬人假體_TLD佈點 15
2. k值轉換 17
二、利用一般診斷X光辨識尿酸結石 18
1. CTDI假體裝置 18
2.參數設定 19
3.影像分析 19
三、利用雙射源雙能量電腦斷層辨識尿酸結石 20
1. CTDI假體 20
2.擬腎臟腹部假體 21
3.影像分析 23
第四章:結果與討論 24
一、結石表徵 24
二、假體合適性 25
三、劑量評估 27
1. KUB 27
2. IVP 28
3. Siemens CT kidney stone scan 29
四、一般診斷X光辨識尿酸結石 31
1. 16公分CTDI假體 31
2. 32公分CTDI假體 33
五、雙能量電腦斷層辨識尿酸結石之方法 34
1. Kidney stone image 34
2. DE ratio 36
2.1 以1.13為閾值 36
2.2 其他閾值 37
3.象限法 41
4.單能量影像 53
六、劑量評估 63
七、實驗限制 65
第五章:結論 66
第六章:參考文獻 67
附錄 72
一、結石表徵 72
二、雙射源雙能量電腦斷層辨識尿酸結石 76
1. 16公分CTDI假體 76
1.1 100% Dose Level 76
1.2 50% Dose Level 82
1.3 25% Dose Level 84
2. 32公分CTDI假體 86
2.1 100% Dose Level 86
2.2 75% Dose Level 92
2.3 50% Dose Level 94
3.擬腎臟腹部假體_體型Ⅰ 96
3.1 100% Dose Level 96
3.2 50% Dose Level 102
3.3 25% Dose Level 104
3.4 12.5% Dose Level 106
4.擬腎臟腹部假體_體型Ⅱ 108
4.1 100% Dose Lever 108
4.2 50% Dose Level 114
4.3 25% Dose Level 116
4.4 12.5% Dose Level 118


Acharya S. Goyal A. Bhalla A. S. Sharma R. Seth A.,Gupta A. K. (2015). In vivo characterization of urinary calculi on dual-energy CT: going a step ahead with sub-differentiation of calcium stones. Acta Radiol., 56(7), 881-889.

Asplin J. R. (1996). Uric acid stones. Semin Nephrol, 16(5), 412-424.

Borghi L. Ferretti P. P. Elia G. F. Amato F. Melloni E. Trapassi M. R.,Novarini A. (1990). Epidemiological study of urinary tract stones in a northern Italian city. Br J Urol, 65(3), 231-235.

Bres-Niewada E. Dybowski B.,Radziszewski P. (2014). Predicting stone composition before treatment - can it really drive clinical decisions? Cent European J Urol., 67(4), 392-396.

Chen T. R. Tyan Y. S. Teng P. S. Chou J. H. Yeh C. Y. T W. E. Shao C. H.,Tung C. J. (2011). Population dose from medical exposure in Taiwan for 2008. Med Phys, 38(6), 3139-3148.

Coursey C. A. Nelson R. Boll D. Paulson E. Ho L. Neville A. Marin D. Gupta R.,Schindera S. T. (2010). Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics, 30(4), 1037-1055.

Curhan G. C. Willett W. C. Rimm E. B. Speizer F. E.,Stampfer M. J. (1998). Body size and risk of kidney stones. J Am Soc Nephrol, 9(9), 1645-1652.

Glazebrook K. N. Guimaraes L. S. Murthy N. S. Black D. F. Bongartz T. Manek N. J. Leng S. Fletcher J. G.,McCollough C. H. (2011). Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology, 261(2), 516-524.

Graser A. Johnson T. R. Bader M. Staehler M. Haseke N. Nikolaou K. Reiser M. F. Stief C. G.,Becker C. R. (2008). Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol, 43(2), 112-119.


Grosjean R. Daudon M. Chammas M. J. Claudon M. Eschwege P. Felblinger J.,Hubert J. (2013). Pitfalls in urinary stone identification using CT attenuation values: are we getting the same information on different scanner models? Eur J Radiol, 82(8), 1201-1206.

Hanley J.,McNeil B. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.

Hemmingsson A. Jung B.,Ytterbergh C. (1986). Dual energy computed tomography: simulated monoenergetic and material-selective imaging. J Comput Assist Tomogr., 10(3), 490-499.

Huang G. O. Engebretsen S. R. Smith J. C. Wallner C. L. Culpepper D. J. Creech J. D. Ng C. C. Mai A. T. Chung C. S. Olgin G. Arnold D. C.,Baldwin D. D. (2014). Detection of uric acid stones in the ureter using low- and conventional-dose computed tomography. Urology, 84(3), 571-574.

Huda W.,Mettler F. A. (2011). Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology, 258(1), 236-242.

ICRP. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. . Ann ICRP, 37(2-4), 1-332.

Johnson T. R. Krauss B. Sedlmair M. Grasruck M. Bruder H. Morhard D. Fink C. Weckbach S. Lenhard M. Schmidt B. Flohr T. Reiser M. F.,Becker C. R. (2007). Material differentiation by dual energy CT: initial experience. Eur Radiol, 17(6), 1510-1517.

Kluner C. Hein P. Gralla O. Hein E. Hamm B. Romano V.,Rogalla P. (2006). Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr, 30(1), 44-50.

Krasnicki T. Podgorski P. Guzinski M. Czarnecka A. Tupikowski K. Garcarek J.,Marek Sasiadek M. (2012). Novel clinical applications of dual energy computed tomography. Adv Clin Exp Med, 21(6), 831-841.



Lee C. H. Goo J. M. Ye H. J. Ye S. J. Park C. M. Chun E. J.,Im J. G. (2008). Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics, 28(5), 1451-1459.

Lee Y. H. Huang W. C. Tsai J. Y. Lu C. M. Chen W. C. Lee M. H. Hsu H. S. Huang J. K.,Chang L. S. (2002). Epidemiological studies on the prevalence of upper urinary calculi in Taiwan. Urol Int, 68(3), 172-177.

Li X. H. Zhao R. Liu B,Yu Y. Q. (2013). Determination of urinary stone composition using dual-energy spectral CT: initial in vitro analysis. Clin Radiol, 68(7), 370-377.

Lopez M.,Hoppe B. (2010). History, epidemiology and regional diversities of urolithiasis. Pediatr Nephrol, 25(1), 49-59.

Menke J. (2005). Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology, 236(2), 565-571.

Mettler F. A., Jr. Bhargavan M. Faulkner K. Gilley D. Gray J. Ibbott G. Lipoti J. Mahesh M. McCrohan J. Stabin M. Thomadsen B.,Yoshizumi T. T. (2009). Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources--1950-2007. Radiology, 253(2), 520-531.

Mettler F. A., Jr. Huda W. Yoshizumi T. T.,Mahesh M. (2008). Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology, 248(1), 254-263.

Mitterberger M. Pinggera G. M. Pallwein L. Gradl J. Feuchtner G. Plattner R. Neururer R. Bartsch G. Strasser H.,Frauscher F. (2007). Plain abdominal radiography with transabdominal native tissue harmonic imaging ultrasonography vs unenhanced computed tomography in renal colic. BJU Int, 100(4), 887-890.

Parmar M. S. (2004). Kidney stones. BMJ, 328(7453), 1420-1424.

Primak A. N. Fletcher J. Vrtiska T. Dzyubak O. Lieske J. Jackson M. Williams J. J.,McCollough C. H. (2007). Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol, 14(12), 1441-1447.


Primak A. N. Giraldo J. C. Eusemann C. D. Schmidt B. Kantor B. Fletcher J. G.,McCollough C. H. (2010). Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol, 195(5), 1164-1174.

Qu M. Jc R.-G. S L. Jc W. Tj V. Jc L.,McCollough C. H. (2011). Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol, 196(6), 1279-1287.

Romanyukha A. Delzer J. A. Grypp M. D.,Williams A. S. (2015). Effect of short-term sensitivity loss in LiF:Mg, Cu, P thermoluminescent dosemeter and its implications on personnel dosimetry operations. Radiat Prot Dosimetry, 1-8.

Romero V. Akpinar H.,Assimos D. G. (2010). Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol, 12(2-3), e86-96.

Russell W. J. Yoshinagah Antoku S.,Mizuno M. (1966). Active bone marrow distribution in the adult. Br J Radiol, 39(466), 735-739.

Saw K. C. McAteer J. Monga A. Chua G. Lingeman J.,Williams J. C., Jr. (2000). Helical CT of urinary calculi: effect of stone composition, stone size, and scan collimation. AJR Am J Roentgenol, 175(2), 329-332.

Scheffel H. Stolzmann P. Frauenfelder T. Schertler T. Desbiolles L. Leschka S. Marincek B.,Alkadhi H. (2007). Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol, 42(12), 823-829.

Schenzle J. C. Sommer W. Neumaier K. Michalski G. Lechel U. Nikolaou K. Becker C. Reiser M.,Johnson T. R. (2010). Dual energy CT of the chest: how about the dose? Invest Radiol, 45(6), 347-353.

Seltzer S. M. (1993). Calculation of photon mass energy-transfer and mass energy-absorption coefficients. Radiat Res., 136(2), 147-170.

Shekarriz B.,Stoller M. L. (2002). Uric acid nephrolithiasis: current concepts and controversies. J Urol, 168(4 Pt 1), 1307-1314.

Snyder W. Fisher H. J. Ford M. F.,Warner G. G. (1969). "MIRD No.5 Revised." Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med., Suppl 3, 7-52.

Soucie J. M. Coate s. R. McClellan W. Austin H.,Thun M. (1996). Relation between geographic variability in kidney stones prevalence and risk factors for stones. Am J Epidemiol, 143(5), 487-495.

Thomas C. Heuschmid M. Schilling D. Ketelsen D. Tsiflikas I. Stenzl A. Claussen C.,P S. H. (2010). Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology, 257(2), 402-409.

Torricelli F. C. Marchini G. S. De S. Yamacake K. G. Mazzucchi E.,Monga M. (2014). Predicting urinary stone composition based on single-energy noncontrast computed tomography: the challenge of cystine. Urology, 83(6), 1258-1263.

Yilmaz S. Sindel T. Arslan G. Ozkaynak C. Karaali K. Kabaalioglu A.,Luleci E. (1998). Renal colic: comparison of spiral CT, US and IVU in the detection of ureteral calculi. Eur Radiol, 8(2), 212-217.

Yu L. Leng S.,McCollough C. H. (2012). Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol, 199(5 Suppl), S9-S15.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊