跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝秀利
研究生(外文):Hsiu-Li Hsieh
論文名稱:可撓式線性陣列型酸鹼感測器製作與分析
論文名稱(外文):Fabrication and Characterization of the Flexible Linear-Array pH Sensors
指導教授:孫台平
指導教授(外文):Tai-Ping Sun
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:66
中文關鍵詞:二氧化錫薄膜銀膠參考電極碳電極陣列型酸鹼感測器
外文關鍵詞:tin oxide thin filmsilver reference electrodecarbon electrodepH sensor array
相關次數:
  • 被引用被引用:1
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
  本論文係以發展可撓式及可攜式的陣列型電壓式酸鹼感測元件,感測元件組合以微小銀電極結合二氧化錫之工作電極,製作的方式是以網版印刷技術完成銀參考電極,及PET薄膜上層完成碳電極,然後再碳電極工作電極上濺鍍一層二氧化錫完成二氧化錫(SnO2)工作電極。

  測試陣列型電壓式酸鹼感測器,測試標準是以pH緩衝液於pH2~pH12,具感測氫離子之特性,獲得感測度為50~55mV/pH,由實驗結果証明:陣列型感測元件與銀參考電極的感測度比玻璃參考電極佳,可以替代傳統的玻璃電極。

  综上所述此種可撓式及可攜式的陣列型電壓式酸鹼感測元件,已開發設計完成並且發展出基本架構,此種陣列型酸鹼感測器元件製作具可大量生產,元件價格低廉等優點,結合微小銀電極製程即可實現多重感測器的架構。
  This study aimed to develop a flexible and portable potentiometric pH sensor arrays composed of silver reference electrode and tin oxide (SnO2) working electrode. The fabrication procedures were screen-printing the silver reference electrode and carbon working electrode on top of a PET substrate. Then, SnO2 was sputtered on top of the carbon working electrode to form the SnO2 working electrode.

  This potentiometric pH sensor arrays was tested using standard pH buffer solution (pH2~pH12). It was found that the sensitivity of this sensor arrays was 50~55mV/pH. Also, this pH sensor arrays on measuring pH was compared to a commercial glass reference electrode and both findings agreed with each other. Therefore, this showed that the screen-printing silver reference electrode could substitute the traditional glass reference electrode.
  
  In conclusion, a flexible and portable potentiometric pH sensor arrays was developed and this pH sensor arrays gave a fundamental structure for the development of a potentiometric biosensor. The advantages of this pH sensor arrays were that it was possible to allow multi-analytes to be analyzed. Finally, since screen-printing technique was employed on the fabrication, this could facilitate massive production with lower cost.
目錄
中文摘要 I
English Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII

第1章緒論 1
1.1前言 1
1.2研究動機與目的 1
1.3章節提要 2

第2章理論背景 3
2.1研究背景 3
2.2文獻回顧 5
2.3理論基礎 5
2.3.1微感測器理論分析與探討 5
2.3.2論文研究方式與設計流程圖 12

第3章陣列型電壓式酸鹼感測器備製 14
3.1網版印刷簡介 14
3.1.1陣列型網版印刷碳電極之製作 14
3.2濺鍍原理 16
3.2.1薄膜成長理論 17
3.2.2薄膜製程 19
3.3二氧化錫薄膜與碳電極之材料界面分析 20

第4章結果與討論 22
4.1感測器讀出訊號量測架購 22
4.1.1 單個玻璃電極量測結果 22
4.1.2 1×1玻璃電極量測結果 24
4.1.2 1×4玻璃電極量測結果 30
4.1.3 1×8相加玻璃電極量測結果 32
4.2單個微小化參考電極量測結果 33
4.2.1 1×1微小化參考電極量測結果 35
4.2.2陣列型玻璃參考電極與銀參考電極量測結果 52
4.2.3 1×4微小化參考電極量測結果 52
4.2.4 1×8微小化參考電極量測結果 54
4.3銀參考電極搭配鹼感測元件信號雜訊比量測 56

第5章結論與未來展望 59
5.1結論 59
5-1 未來展望 59
參考文獻 60
論文發表 66
已發表論文 66
已投稿論文 66
1 D. Rehm, E. McEnroe and D. Diamond, “An all solid-state reference
electrodebased on a potassium chloride dopedvinyl esteresin”,Analytical Proceeding Including Analytical Communication, Vol. 32, pp. 319-322, 1995.
2 J. J. Pedrotti, L. Angnes, I. G. R. Gutz, “Miniaturized reference electrode withmicro porous polymer junctions”, Electroanalysis, Vol. 8, pp.673-675, 1996.
3 P. Bergveld, “Development of an ion-sensitive solid-state device for
neurophysiological measurements”, IEEE Transactions on Biomedical
Engineering, Vol. BME-17, pp.70-71, 1970.
4 A. W. J. Cranny, J. K. Atkinson, “Thick film silver-silver chloride reference
electrodes”, Measurement Science and Technology, Vol. 9, pp. 1557-1565, 1998.
5 M. A. Nolan, S. H. Tan, S. P. Kounaves, “Fabrication and characterization of a solid state reference electrode for electroanalysis of natural waters with ultramicroelectrodes”, Analytical Chemistry, Vol. 69, pp. 1244-1247, 1997.
6 A. Simonis, H. Luth, J. Wang, M. J. Schoning, “New concepts of miniaturized
reference electrodes in silicon technology for potentiometric sensor systems”, Sensors and Actuators B, Vol.103,pp. 429-435, 2004.
7 P. J. Kinlen, J. E. Heider, D. E. Hubbard,“A solid-state pH sensor based on a Nafion
-coated iridium oxide indicator electrode and a polymer-based silver chloride
reference electrode”, Sensors and Actuators B, Vol. 22, pp.13-25, 1994.
8 G. Valdes-Ramirez, G. A. Alvarez-Romero, C. A. Galan-Vidal, P. R. Hernandez-Rodriguez, M. T. Ramirez-Silva, “Composites: a novel alternative to construct solid state Ag/AgCl reference electrodes” , Sensors and Actuators B, In press, 2005.
9 L. Tymecki, E. Zwierkowska, R. Koncki,“Screen-printed reference electrodes for
potentiometric measurements”, Analytica Chimica Acta, Vol. 526, pp. 3-11,
2004.
10 H. J. Yoon, J. H. Shin, S. D. Lee, H. Nam, G. S. Cha, T. D. Strong,R. B.Brown, “Solid-state ion sensors with a liquid junction-free polymer membrane-based reference electrode for blood analysis”, Sensors and Actuators B, Vol. 64, pp. 8-14, 2000.
11 H. Suzuki, T. Hirakawa, S. Sasaki, I. Karube, “Micromachined liquid-junction Ag/AgCl reference electrode”, Sensors and Actuators B, Vol. 46, pp.146-154, 1998.
12 H. Suzuki, H. Shiroishi, S. Sasaki and I. Karube,“Microfabricated liquid u nctionAg/AgCl reference electrode and its application to a on-chip potentiometric sensor”, Analytical Chemistry, Vol. 71, pp. 5069-5075, 1997.
13 P. Bergveld, “Development of an ion-sensitive solid-state device forneurophysiological measurements”, IEEE Transaction Biomedical Engineering, BME-17, 1970, pp.70-71.
14 S.D. Collins, “Practical limits for solid-state reference electrodes”, Sensors and Actuators B, Vol.10, 1993, pp.169-178.
15 Yuri G. Vlasov, and Andrey V. Bratov, “Analytical applications of pHISFETs”, Sensors and Actuators B, Vol.10, 1992, pp.1-6.
16 C. Diekmann, C. Dumschat, K. Cammann, and M. Knoll, “Disposable reference electrode”, Sensors and Actuators B, Vol.24, 1995, pp.276-278.
17 A. S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5-gate ISFETs”, Sensors and Actuators B, Vol.7, 1992, pp.367-370.
18 T. Katsube, I. Lauks, and J.N. Zemel, “PH-sensitive sputtered iridium oxide films”, Sensors and Actuators B, Vol.2, 1982, pp.399-410.
19 Manuela Adami, Dario Alliata, Corrado Del Carlo, Mauro Martini, Luciana Piras, Marco Sartore, and Claudio Nicolini, “Characterization of silicon transducers with Si3N4 sensing surfaces by an AFM and a PAB system”, Sensors and Actuators B, Vol.24, 1995, pp.889-893.
20 C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, and E. Lora-Tamayo, “Multilayer ISFET membranes for Microsystems applications”, Sensors and Actuators B, Vol. 35, 1996, pp.136-140.
21 Pavel Neuzil, “ISFET integrated sensor technology”, Sensors and Actuators B, Vol.24, 1995, pp.232-235.
22 J. Van Der Spiegel, I. Lauks, P. Chan, D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe”, Sensors and Actuators, Vol. 4, pp. 291-298, 1983.
23 J.Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sensors and Actuators, 4 (1983) 291-298.
24 L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, and S.K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane”, Material Chemistry and Physics, Vol.63, 2000, pp.19-23.
25 L.L. Chi, L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, K.P. Hsiung, and S.K. Hsiung, “Study on separative structure of EnFET to detect acetylcholine”, Sensors and Actuators B, Vol.71, 2000, pp.68-72.
26 Wang Zheng-Xiao, “Applications of penicillinase FET in 87 penicillin-fermentation engineering”, Sensors and Actuators B, 13-14 (1993) 568-569.
27 Andre Haemmerli, Jiri Janata and H. Mack Brown, “Electrical characteristics of K+ and Cl− EFT microelectrodes”, Sensors and Actuators, 3 (1982/1983) 149-158.
28 B.H. Van Der Schoot, H. H. Van Den Vlekkert, N. F. De Rooij, A Van Den Berg and A. Grisel, “A flow injection analysis system with glass-bonded ISFETs for the simultaneous detection of calcium and potassium ion and pH”, Sensors and Actuators B, 4 (1991) 239-241.
29 D. Wilhelm, H. Voigt, W. Treichel, R. Ferretti and S. Prasad, “pH sensor based on differential measurements on one pH-FET chip”, Sensors and Actuators B, 4 (1991) 145-149.
30 V. Tvarozek, H. Ti Tien, I. Novotny, T. Hianik, J. Dlugopolsky, W. Ziegler, A. Leitmannnova-Ottova, J. Jakabovic, V. Rehacek and M. Uhlar, “Thin-film microsystem applicable in (bio)chemical sensors”, Sensors and Actuators B, 18-19 (1994) 597-602.
31 Werner Moritz, Fred Lisdat, Bart H. Van Der Schoot, Nico F. De Rooij, Hans H. Van Den Vlekkert, H.C.G. Ligtenberg, Ingolf Grohmann, “Flow injection analysis using pH/pF ISFET combinations for determination of very low fluoride concentrations”, Sensors and Actuators B, 15-16 (1993) 223-227.
32 K. G. Kreider, M. J. Tarlov, J. P. Cline, “Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides”, Sensors and Actuators B, Vol. 28, pp. 167-172, 1995.
33 M. J. Madou, K. Kinoshita, “Electrochemical measurements on metal oxide electrodes-I. zirconium dioxide”, Electrochimica Acta., Vol. 29, pp. 411-417, 1984.
34 S. Glab, A. Hulanicki, G. Edwall, F. Ingman, “Metal-metal oxide and metal oxide electrodes as pH sensors”, Critical Review in Analytical Chemistry, Vol. 21, pp.29-47, 1989.
35 P. Gimmel, B. Gompf, D. Schmeiosser, H. D. Weimhofer, W. Gopel, M. Klein, “Ta2O5 gates of pH sensitive device comparative spectroscopic and electrical studies”, Sensors and Actuators B, Vol. 17, pp, 195-202, 1989.
36 A. Fog, R. P. Buck, “Electronic semiconducting oxides as pH sensors”, Sensors and Actuators, Vol. 5, pp. 137-146, 1984.
37 D. E. Yates, S. Levine, T. W. Healy, “Site-binding model of the electrical double layer at oxide/water interface”, Journal of the Chemical Society Faraday Transactions I, Vol. 70, pp.1807-1818,
38 D. E. Yates, S. Levine, T. W. Healy, “Site-binding model of the electrical double layer at oxide/water interface”, Journal of the Chemical Society Faraday Transactions I, Vol. 70, pp.1807-1818,
39 R. E. G. van Hal, J. C. T. Eijkel, P. Bergveld, “A general model to describe the electrostatic potential at electrolyte oxide interfaces”, Advance in Colloid and Interface Science, Vol.69, pp. 31-62, 1996.
40 D. E. Yates, S. Levine, T. W. Healy, “Site-binding model of the electrical double layer at oxide/water interface”, Journal of the Chemical Society Faraday Transactions I, Vol. 70, pp.1807-1818,
41 L. Bousse, N. F. de Rooij, and P. Bergveld, “The influence of counter-ion adsorption on the characteristics of insulator surfaces”, Surface Science, Vol. 135, pp. 479-496, 1983.
42 J. Janata, “Electrochemistry of chemically sensitive field effect transistors”, Sensors and Actuators B, Vol. 4, pp. 255-265, 1983.
43 C. W. Pan, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, “Development of the tin oxide pH electrode by sputtering method”, Sensors and Actuators B, Vol. 108, pp. 863-869, 2005.
44 G. J. Janz, “In reference electrode theory and practice”, New York Academic Press, pp. 210-216, 1961
45 D. Rehm, E. McEnroe and D. Diamond, “An all solid-state reference electrode based on a potassium chloride doped vinyl esterresin”,AnalyticalProceeding Including Analytical Communication, Vol. 32, pp. 319-322, 1995.
46 J. J. Pedrotti, L. Angnes, I. G. R. Gutz, “Miniaturized reference electrode with micro porous polymer junctions”, Electroanalysis, Vol. 8, pp.673-675, 1996.
47 C. Diekmann, C. Dumschat, K. Cammann, M. Knoll, “Disposable reference electrode”, Sensors and Actuators B, Vol. 24-25, pp.276-278, 1995.
48 A. W. J. Cranny, J. K. Atkinson, “Thick film silver-silver chloride reference electrodes”, Measurement Science and Technology, Vol. 9, pp. 1557-1565, 1998.
49 M. A. Nolan,S.H. Tan, S. P. Kounaves, “Fabrication and characterization of a
solid state reference electrode for electroanalysis of natural waters with
ultramicroelectrodes”, Analytical Chemistry, Vol. 69, pp. 1244-1247, 1997.
50 J. A. Mihell, J. K. Atkinson, “Planar thick-film pH electrodes based on ruthenium dioxide hydrate”, Sensors and Actuators B, Vol. 48, pp. 505-511, 1998.
51 R. Koncki, M. Mascini, “Screen-printed ruthenium dioxide electrodes for pH measurements”, Analytica Chimica Acta, Vol. 351, pp. 143-149, 1997.
52 H. N. McMurray, P. Douglas, D. Abbot, “Novel thick-film pH sensors based on ruthenium dioxide-glass composites”, Sensors and Actuators B, Vol. 28, pp. 9-15, 1995.
53 J. K. Atkinson, A. W. J. Cranny, W. V. Glasspool, J. A. Mihell, “An investigation of multi-element thick film sensor arrays used in the determination of water quality parameters”, Sensors and Actuators B, Vol. 54, pp. 215-231, 1999.
54 E. Traversa, Y. Sadaoka, M. C. Carotta, G. Martinelli, “Environmental monitoring field tests using screen-printed thick-film sensors based on semiconducting oxides”, Sensors and Actuators B, Vol. 65, pp. 181-185, 2000.
55 R. Koncki, S. Glab, J. Dziwulska, I. Palchetti, M. Mascini, “Disposable strip potentiometric electrodes with solven-polymeric ion-selective membranes fabricated using screen-printing technology”, Analytica Chimica Acta, Vol. 385, pp.451-459,
1999.
56 A. Gac, J. K. Atkinson, Z. Zhang, R. P. Sion, “A comparison of thick-film chemical sensor characteristics in laboratory and on-line industrial process applications”, Measurement Science and Technology, Vol. 13, pp. 2062-2073, 2002.
57 K. C. Honeychurch, J. P. Hart, “Screen-printed electrochemical sensors for monitoring metal pollutants”, Trends in Analytical Chemistry, Vol. 22, pp. 456-469, 2003.
58 L. Tymecki, E. Zwierkowska, R. Koncki, “Strip bioelectro chemical cell for potentiometric measurements fabricated by screen-printing”, Analytica Chimica Acta, Vol. 538, pp. 251-256, 2005.
59 楊錦昌(1983)基礎濺鍍電漿。電子發展月刊,68:13-40。
60 Rossnagel, S. M., J. J. Cuomo, and W. D. Westwood (1982) Handbook ofplasma processing technology. Park Ridge, New Jersey: Noyes Publications.
61 Movchan, B. A., and A. V. Demchishin (1969) Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zir-conium dioxide. Physics of Metals and Metallurgy. 28: 83-90.
62 Bunshah, R. F. (1982) Deposition technologies for films and coatings. New Jersey, USA.: Noyes Publications, Park Ridge.
63 C. L. Wu, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, "Study on SnO2/Al/SiO2/Si ISFET with a metal light shield," Materials Chemistry and Physics, vol. 63, pp. 153-156, 2000.
64 L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, "Study of indium
tin oxide thin film for separative extended gate ISFET," Materials Chemistry and
Physics, vol. 70, pp. 12-16, 2001.
65 J. Q. Wang, J. C. Chou, T. P. Sun, S. K. Hsiung, and G. B. Hsiung, "pH-based
potentiometrical flow injection biosensor for urea," Sensors and Actuators, B: Chemical, vol. 91, pp. 5-10, 2003.
66 C. W. Pan, J. C. Chou, I. K. Kao, T. P. Sun, and S. K. Hsiung, "Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device," IEEE Sensors Journal, vol. 3, pp. 164-170, 2003.
67 C. N. Tsai, J. C. Chou, T. P. Sun, and S. K. Hsiung, "Study on the sensing
characteristics and hysteresis effect of the tin oxide pH electrode," Sensors
and Actuators, B: Chemical, vol. 108, pp. 877-882, 2005.
68 C. W. Pan, J. C. Chou, T. P. Sun, and S. K. Hsiung, "Development of the real-time pH sensing system for array sensors," Sensors and Actuators B, vol. 108, pp. 870-876, 2005
69 H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, "Study of
indim tin oxide thin film for separative extended gate ISFET," Materials
Chemistry and Physics, vol. 70, pp. 12-16, 2001.
70 L. Tymecki, E. Zwierkowska, R. Koncki, “Strip bioelectro chemical cell for potentiometric measurements fabricated by screen-printing”, Analytica Chimica Acta, Vol. 538, pp. 251-256, 2005
71 (2000) 中原大學蔣境昇以“以1×4陣列式酸鹼離子感測器之研製”
72 (2002)中原大學陳政成以“以二氧化錫薄膜製作陣列式酸鹼感測元件之研究 ”
73 中原大學洪清舜以“微小參考電極結合生物感測器特性之研究”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top