跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張紹強
研究生(外文):Shao Chiang Chang
論文名稱:有氧間隔與連續中等運動訓練對淋巴球粒線體氧化磷酸化能力之影響
論文名稱(外文):Effect of Aerobic Interval and Moderate Continuous Exercise Training on Lymphocyte Mitochondria Oxidative Phosphorylation Capacity
指導教授:王鐘賢王鐘賢引用關係
指導教授(外文):J. S. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:物理治療學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:118
中文關鍵詞:運動低氧氧化壓力有氧適能淋巴球粒線體電子傳遞鏈氧化磷酸化克氏循環
外文關鍵詞:exercisehypoxiaoxidative stressaerobic fitnesslymphocytemitochondriaelectron transport chainoxidative phosphorylationKrebs cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
目錄
指導教授推薦書
口試委員會審定書
誌謝 iii
中文摘要 v
英文摘要 viii
目錄 x
表目錄 xiv
圖目錄 xv
緒論 (Introduction) - 1 -
第一節 研究背景及目的 - 1 -
第二節 研究假設 - 2 -
文獻回顧 (Literature Review) - 3 -
第一節 淋巴球 - 3 -
第二節 運動與免疫 - 4 -
第三節 粒線體 - 5 -
第四節 粒線體相關疾病 - 7 -
第五節 運動與粒線體 - 8 -
第六節 運動處方制定 - 9 -
實驗設計(Experimental Design) - 11 -
第一節 實驗材料 (Materials) - 11 -
A. 試劑(Reagents) - 11 -
a. 粒線體相關藥品 - 11 -
b. 酵素活性量測 - 12 -
c. 其他藥品或溶液 - 13 -
B. 儀器(Instruments) - 14 -
a. 運動測試器 - 14 -
b. 環境氣體控制室 (Hypoxia Room) - 14 -
c. 氣體偵測系統 - 14 -
d. 心電圖偵測系統 - 15 -
e. 身體組成系統 - 15 -
f. 血液分析、氧合血紅素飽和度及血壓測試 - 15 -
g. 血球細胞處理儀器 - 15 -
h. 其他儀器 - 16 -
C. 耗材(Consumptive materials) - 16 -
第二節 實驗方法 (Methods) - 17 -
A. 研究對象 - 17 -
B. 實驗流程 - 17 -
C. 運動測試 - 18 -
a. 最大運動測試 - 18 -
b. 急性低氧運動測試 - 19 -
c. 停止運動條件 - 20 -
D. 受試者分組與運動訓練處方 - 20 -
E. 血液實驗 - 21 -
a. 淋巴球純化 - 21 -
b. 淋巴球內源性粒線體功能量測 - 22 -
c. 通透性淋巴球粒線體量測 - 24 -
d. 酵素活性量測 - 26 -
統計方法 (Statistical analysis) - 29 -
結果 (Results) - 30 -
第一節 受試者基本資料、身體狀況和活動情形調查 - 30 -
第二節 訓練前後之心肺適能表現 - 32 -
第三節 最大運動測試前後血液數值 - 34 -
第四節 低氧運動測試前後血液數值 - 37 -
第五節 最大運動前後血液中白血球數目 - 39 -
第六節 低氧運動前後血液中白血球數目 - 42 -
第七節 內源性淋巴球粒線體量測 - 45 -
第八節 通透性淋巴球粒線體量測 - 45 -
第九節 蛋白質酵素活性分析 - 47 -
討論 (Discussions) - 48 -
第一節 兩組訓練對於最大運動表現的影響 - 48 -
第二節 運動訓練對白血球數量的影響 - 49 -
第三節 急性低氧運動對淋巴球粒線體的影響 - 50 -
第四節 運動訓練對淋巴球粒線體內源性影響 - 51 -
第五節 運動訓練對通透性淋巴球氧化磷酸化的影響 - 52 -
第六節 運動訓練對糖解作用與粒線體酵素活性的影響 - 53 -
結論 (Conclusion) - 56 -
圖表附錄 - 57 -
參考文獻 - 76 -
附錄 - 88 -
附錄一 - 88 -
附錄二 - 89 -
附錄三 - 91 -
附錄四 - 92 -


圖表目錄
表一 人體基本測量數值與運動表現 - 57 -
表二 最大運動前後血液數值 - 58 -
表三 低氧運動前後血液數值 - 59 -
表四 最大運動前後血液中白血球數量 - 60 -
表五 低氧運動前後血液中白血球數量 - 61 -
圖一 運動測試流程與訓練內容 - 62 -
圖二 急性低氧運動對淋巴球粒線體影響 - 63 -
圖三 急性低氧運動對通透性淋巴球粒線體影響 - 64 -
圖四 AIT組淋巴球粒線體OCR - 65 -
圖五 MCT組淋巴球粒線體OCR - 66 -
圖六 控制組淋巴球粒線體OCR - 67 -
圖七 休息時通透性淋巴球粒線體氧化磷酸化來源比例 - 68 -
圖八 AIT組通透性淋巴球粒線體OCR - 69 -
圖九 MCT組通透性淋巴球粒線體OCR - 70 -
圖十 控制組通透性淋巴球粒線體OCR - 71 -
圖十一 糖解作用相關酵素活性分析 - 72 -
圖十二 克式循環相關酵素活性分析 - 73 -
圖十三 琥珀酸堆積造成發炎與ROS產生 - 74 -
圖十四 運動訓練可以減少發炎並促進粒線體功能 - 75 -

Adeva-Andany, M., Lopez-Ojen, M., Funcasta-Calderon, R., Ameneiros-Rodriguez, E., Donapetry-Garcia, C., Vila-Altesor, M., &; Rodriguez-Seijas, J. (2014). Comprehensive review on lactate metabolism in human health. Mitochondrion, 17C, 76-100. doi: 10.1016/j.mito.2014.05.007
Ali, S. S., Hsiao, M., Zhao, H. W., Dugan, L. L., Haddad, G. G., &; Zhou, D. (2012). Hypoxia-adaptation involves mitochondrial metabolic depression and decreased ROS leakage. PLoS One, 7(5), e36801. doi: 10.1371/journal.pone.0036801
Beaudoin, M. S., Perry, C. G., Arkell, A. M., Chabowski, A., Simpson, J. A., Wright, D. C., &; Holloway, G. P. (2014). Impairments in mitochondrial palmitoyl-CoA respiratory kinetics that precede development of diabetic cardiomyopathy are prevented by resveratrol in ZDF rats. J Physiol, 592(Pt 12), 2519-2533. doi: 10.1113/jphysiol.2013.270538
Bell, R. A., Dawson, N. J., &; Storey, K. B. (2012). Insights into the in vivo regulation of glutamate dehydrogenase from the foot muscle of an estivating land snail. Enzyme Res, 2012, 317314. doi: 10.1155/2012/317314
Benschop, R. J., Rodriguez-Feuerhahn, M., &; Schedlowski, M. (1996). Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain, behavior, and immunity, 10(2), 77-91.
Brand, M. D., Chien, L.-F., Ainscow, E. K., Rolfe, D. F. S., &; Porter, R. K. (1994). The causes and functions of mitochondrial proton leak. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1187(2), 132-139. doi: http://dx.doi.org/10.1016/0005-2728(94)90099-X
Camilleri, A., &; Vassallo, N. (2014). The Centrality of Mitochondria in the Pathogenesis and Treatment of Parkinson's Disease. CNS Neurosci Ther. doi: 10.1111/cns.12264
Chacko, B. K., Kramer, P. A., Ravi, S., Benavides, G. A., Mitchell, T., Dranka, B. P., . . . Darley-Usmar, V. M. (2014). The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin Sci (Lond), 127(6), 367-373. doi: 10.1042/CS20140101
Cheng, Z., &; Ristow, M. (2013). Mitochondria and metabolic homeostasis. Antioxid Redox Signal, 19(3), 240-242. doi: 10.1089/ars.2013.5255
Choi, H. S., Choi, Y. G., Sin, H. Y., Oh, J. M., Park, J. H., Kim, J. I., . . . Kim, Y. S. (2014). Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.04.069
Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., . . . Murphy, M. P. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527), 431-435. doi: 10.1038/nature13909
Dawson, N. J., &; Storey, K. B. (2012). An enzymatic bridge between carbohydrate and amino acid metabolism: regulation of glutamate dehydrogenase by reversible phosphorylation in a severe hypoxia-tolerant crayfish. J Comp Physiol B, 182(3), 331-340. doi: 10.1007/s00360-011-0629-4
Friedman, R. A., Navalta, J. W., Fedor, E. A., Kell, H. B., Lyons, T. S., Arnett, S. W., &; Schafer, M. A. (2012). Repeated high-intensity Wingate cycle bouts influence markers of lymphocyte migration but not apoptosis. Appl Physiol Nutr Metab, 37(2), 241-246. doi: 10.1139/h11-156
Fu, T. C., Wang, C. H., Lin, P. S., Hsu, C. C., Cherng, W. J., Huang, S. C., . . . Wang, J. S. (2013). Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol, 167(1), 41-50. doi: 10.1016/j.ijcard.2011.11.086
Gillum, T. L., Kuennen, M. R., Schneider, S., &; Moseley, P. (2011). A review of sex differences in immune function after aerobic exercise. Exerc Immunol Rev, 17, 104-121.
Gleeson, M. (2007). Immune function in sport and exercise. Journal of Applied Physiology, 103(2), 693-699.
Goncalves, I. O., Passos, E., Rocha-Rodrigues, S., Diogo, C. V., Torrella, J. R., Rizo, D., . . . Magalhaes, J. (2014). Physical exercise prevents and mitigates non-alcoholic steatohepatitis-induced liver mitochondrial structural and bioenergetics impairments. Mitochondrion. doi: 10.1016/j.mito.2014.03.012
Gubser, P. M., Bantug, G. R., Razik, L., Fischer, M., Dimeloe, S., Hoenger, G., . . . Hess, C. (2013). Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol, 14(10), 1064-1072. doi: 10.1038/ni.2687
Gutsaeva, D. R., Carraway, M. S., Suliman, H. B., Demchenko, I. T., Shitara, H., Yonekawa, H., &; Piantadosi, C. A. (2008). Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci, 28(9), 2015-2024. doi: 10.1523/JNEUROSCI.5654-07.2008
Haas, R., Marelli-Berg, F., &; Mauro, C. (2013). In the eye of the storm: T cell behavior in the inflammatory microenvironment. Am J Clin Exp Immunol, 2(2), 146-155.
Haran, M., &; Gross, A. (2014). Balancing glycolysis and mitochondrial OXPHOS: lessons from the hematopoietic system and exercising muscles. Mitochondrion, 19 Pt A, 3-7. doi: 10.1016/j.mito.2014.09.007
Heerlein, K., Schulze, A., Hotz, L., Bartsch, P., &; Mairbaurl, H. (2005). Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells. Am J Respir Cell Mol Biol, 32(1), 44-51. doi: 10.1165/rcmb.2004-0202OC
Higgins, G. C., &; Coughlan, M. T. (2014). Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol, 171(8), 1917-1942. doi: 10.1111/bph.12503
Hutter, E., Unterluggauer, H., Garedew, A., Jansen-Durr, P., &; Gnaiger, E. (2006). High-resolution respirometry--a modern tool in aging research. Exp Gerontol, 41(1), 103-109. doi: 10.1016/j.exger.2005.09.011
Jacobs, R. A., Boushel, R., Wright-Paradis, C., Calbet, J. A., Robach, P., Gnaiger, E., &; Lundby, C. (2013). Mitochondrial function in human skeletal muscle following high-altitude exposure. Exp Physiol, 98(1), 245-255. doi: 10.1113/expphysiol.2012.066092
Jacobs, R. A., &; Lundby, C. (2013). Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol (1985), 114(3), 344-350. doi: 10.1152/japplphysiol.01081.2012
Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R., &; Brand, M. D. (2010). Mitochondrial proton and electron leaks. Essays Biochem, 47, 53-67. doi: 10.1042/bse0470053
Jiang, H. K., Wang, Y. H., Sun, L., He, X., Zhao, M., Feng, Z. H., . . . Zang, W. J. (2014). Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: roles of mitochondrial network dynamics. Int J Mol Sci, 15(4), 5304-5322. doi: 10.3390/ijms15045304
Johnson, M. L., Robinson, M. M., &; Nair, K. S. (2013). Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab, 24(5), 247-256. doi: 10.1016/j.tem.2012.12.003
Kramer, P. A., Chacko, B. K., Ravi, S., Johnson, M. S., Mitchell, T., &; Darley-Usmar, V. M. (2014). Bioenergetics and the oxidative burst: protocols for the isolation and evaluation of human leukocytes and platelets. J Vis Exp(85). doi: 10.3791/51301
Ledderose, C., Bao, Y., Lidicky, M., Zipperle, J., Li, L., Strasser, K., . . . Junger, W. G. (2014). Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. J Biol Chem, 289(37), 25936-25945. doi: 10.1074/jbc.M114.575308
Lemieux, H., Semsroth, S., Antretter, H., Hofer, D., &; Gnaiger, E. (2011). Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol, 43(12), 1729-1738. doi: 10.1016/j.biocel.2011.08.008
McCarthy, D. A., &; Dale, M. M. (1988). The Leucocytosis of Exercise. Sports Medicine, 6(6), 333-363. doi: 10.2165/00007256-198806060-00002
McCarthy, D. A., Grant, M., Marbut, M., Watling, M., Wade, A. J., Macdonald, I., . . . Perry, J. D. (1991). Brief exercise induces an immediate and a delayed leucocytosis. British Journal of Sports Medicine, 25(4), 191-195.
Mills, E., &; O'Neill, L. A. (2014). Succinate: a metabolic signal in inflammation. Trends Cell Biol, 24(5), 313-320. doi: 10.1016/j.tcb.2013.11.008
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144-148.
Moholdt, T. T., Amundsen, B. H., Rustad, L. A., Wahba, A., Lovo, K. T., Gullikstad, L. R., . . . Slordahl, S. A. (2009). Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J, 158(6), 1031-1037. doi: 10.1016/j.ahj.2009.10.003
Muftuoglu, M., Mori, M. P., &; de Souza-Pinto, N. C. (2014). Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion, 17, 164-181. doi: 10.1016/j.mito.2014.03.007
Nielsen, H., &; Pedersen, B. (1997). Lymphocyte proliferation in response to exercise. European journal of applied physiology and occupational physiology, 75(5), 375-379.
Nieman, D. C. (1994). Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc, 26(2), 128-139.
Nieman, D. C. (2000). Exercise effects on systemic immunity. Immunol Cell Biol, 78(5), 496-501.
O'Sullivan, D., van der Windt, G. J., Huang, S. C., Curtis, J. D., Chang, C. H., Buck, M. D., . . . Pearce, E. L. (2014). Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity, 41(1), 75-88. doi: 10.1016/j.immuni.2014.06.005
Pearce, E. L., Poffenberger, M. C., Chang, C. H., &; Jones, R. G. (2013). Fueling immunity: insights into metabolism and lymphocyte function. Science, 342(6155), 1242454. doi: 10.1126/science.1242454
Pedersen, B. K., &; Toft, A. D. (2000). Effects of exercise on lymphocytes and cytokines. British Journal of Sports Medicine, 34(4), 246-251. doi: 10.1136/bjsm.34.4.246
Perl, A., Gergely, P., Jr., Puskas, F., &; Banki, K. (2002). Metabolic switches of T-cell activation and apoptosis. Antioxid Redox Signal, 4(3), 427-443. doi: 10.1089/15230860260196227
Pesta, D., &; Gnaiger, E. (2012). High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol, 810, 25-58. doi: 10.1007/978-1-61779-382-0_3
Plaitakis, A., &; Zaganas, I. (2001). Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res, 66(5), 899-908.
Plas, D. R., Rathmell, J. C., &; Thompson, C. B. (2002). Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol, 3(6), 515-521. doi: 10.1038/ni0602-515
Reddy, P. H. (2014). Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today. doi: 10.1016/j.drudis.2014.03.020
Robach, P., Bonne, T., Fluck, D., Burgi, S., Toigo, M., Jacobs, R. A., &; Lundby, C. (2014). Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med Sci Sports Exerc, 46(10), 1936-1945. doi: 10.1249/MSS.0000000000000321
Schlagowski, A. I., Singh, F., Charles, A. L., Gali Ramamoorthy, T., Favret, F., Piquard, F., . . . Zoll, J. (2014). Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations. J Appl Physiol (1985), 116(4), 364-375. doi: 10.1152/japplphysiol.01177.2013
Sena, L. A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D. A., . . . Chandel, N. S. (2013). Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity, 38(2), 225-236. doi: 10.1016/j.immuni.2012.10.020
Shephard, M. D., Penberthy, L. A., &; Berry, M. N. (1987). Adaptation of methods for glutamate dehydrogenase and alcohol dehydrogenase activities to a centrifugal analyser: assessment of their clinical use in anoxic states of the liver. J Clin Pathol, 40(10), 1240-1246.
Simpson, R. J. (2011). Aging, persistent viral infections, and immunosenescence: can exercise "make space"? Exerc Sport Sci Rev, 39(1), 23-33. doi: 10.1097/JES.0b013e318201f39d
Solaini, G., Baracca, A., Lenaz, G., &; Sgarbi, G. (2010). Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta, 1797(6-7), 1171-1177. doi: 10.1016/j.bbabio.2010.02.011
Sonkar, V. K., Kulkarni, P. P., &; Dash, D. (2014). Amyloid beta peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization. Faseb j, 28(4), 1819-1829. doi: 10.1096/fj.13-243691
Stanley, C. A. (2009). Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children. Am J Clin Nutr, 90(3), 862s-866s. doi: 10.3945/ajcn.2009.27462AA
Sultana, R., Baglioni, M., Cecchetti, R., Cai, J., Klein, J. B., Bastiani, P., . . . Butterfield, D. A. (2013). Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med, 65, 595-606. doi: 10.1016/j.freeradbiomed.2013.08.001
Thauer, R. K. (1988). Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem, 176(3), 497-508.
Tjønna, A. E., Leinan, I. M., Bartnes, A. T., Jenssen, B. M., Gibala, M. J., Winett, R. A., &; Wisløff, U. (2013). Low- and High-Volume of Intensive Endurance Training Significantly Improves Maximal Oxygen Uptake after 10-Weeks of Training in Healthy Men. PLoS One, 8(5), e65382. doi: 10.1371/journal.pone.0065382
Tjonna, A. E., Lee, S. J., Rognmo, O., Stolen, T. O., Bye, A., Haram, P. M., . . . Wisloff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation, 118(4), 346-354. doi: 10.1161/circulationaha.108.772822
Torraco, A., Peralta, S., Iommarini, L., &; Diaz, F. (2015). Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion, 21, 76-91. doi: 10.1016/j.mito.2015.01.009
Turner, J. E., Bosch, J. A., &; Aldred, S. (2011). Measurement of exercise-induced oxidative stress in lymphocytes. Biochem Soc Trans, 39(5), 1299-1304. doi: 10.1042/BST0391299
Van Bergen, N. J., Blake, R. E., Crowston, J. G., &; Trounce, I. A. (2014). Oxidative phosphorylation measurement in cell lines and tissues. Mitochondrion, 15C, 24-33. doi: 10.1016/j.mito.2014.03.003
van der Merwe, C., Loos, B., Swart, C., Kinnear, C., Henning, F., van der Merwe, L., . . . Bardien, S. (2014). Mitochondrial impairment observed in fibroblasts from South African Parkinson's disease patients with parkin mutations. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.03.151
van der Windt, G. J., Everts, B., Chang, C. H., Curtis, J. D., Freitas, T. C., Amiel, E., . . . Pearce, E. L. (2012). Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity, 36(1), 68-78. doi: 10.1016/j.immuni.2011.12.007
Wang, J. S., Chen, W. L., &; Weng, T. P. (2011). Hypoxic exercise training reduces senescent T-lymphocyte subsets in blood. Brain Behav Immun, 25(2), 270-278. doi: 10.1016/j.bbi.2010.09.018
Wang, J. S., &; Lin, C. T. (2010). Systemic hypoxia promotes lymphocyte apoptosis induced by oxidative stress during moderate exercise. Eur J Appl Physiol, 108(2), 371-382. doi: 10.1007/s00421-009-1231-2
Wen, X., Wu, J., Chang, J. S., Zhang, P., Wang, J., Zhang, Y., . . . Zhang, Y. (2014). Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 alpha mRNA in mouse skeletal muscle. Biomed Res Int, 2014, 402175. doi: 10.1155/2014/402175
Weng, T. P., Huang, S. C., Chuang, Y. F., &; Wang, J. S. (2013). Effects of interval and continuous exercise training on CD4 lymphocyte apoptotic and autophagic responses to hypoxic stress in sedentary men. PLoS One, 8(11), e80248. doi: 10.1371/journal.pone.0080248
Williams, M. S., &; Kwon, J. (2004). T cell receptor stimulation, reactive oxygen species, and cell signaling. Free Radic Biol Med, 37(8), 1144-1151. doi: 10.1016/j.freeradbiomed.2004.05.029
Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., . . . Skjaerpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115(24), 3086-3094. doi: 10.1161/circulationaha.106.675041
Wohlgemuth, S. E., Calvani, R., &; Marzetti, E. (2014). The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol, 71C, 62-70. doi: 10.1016/j.yjmcc.2014.03.007
Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., . . . Ferrick, D. A. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol, 292(1), C125-136. doi: 10.1152/ajpcell.00247.2006
Wu, Z., Zhu, Y., Cao, X., Sun, S., &; Zhao, B. (2014). Mitochondrial Toxic Effects of Abeta Through Mitofusins in the Early Pathogenesis of Alzheimer's Disease. Mol Neurobiol. doi: 10.1007/s12035-014-8675-z
Xu, A., Liu, J., Liu, P., Jia, M., Wang, H., &; Tao, L. (2014). Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome. Biochem Biophys Res Commun, 446(4), 1184-1189. doi: 10.1016/j.bbrc.2014.03.089



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊