|
Adeva-Andany, M., Lopez-Ojen, M., Funcasta-Calderon, R., Ameneiros-Rodriguez, E., Donapetry-Garcia, C., Vila-Altesor, M., &; Rodriguez-Seijas, J. (2014). Comprehensive review on lactate metabolism in human health. Mitochondrion, 17C, 76-100. doi: 10.1016/j.mito.2014.05.007 Ali, S. S., Hsiao, M., Zhao, H. W., Dugan, L. L., Haddad, G. G., &; Zhou, D. (2012). Hypoxia-adaptation involves mitochondrial metabolic depression and decreased ROS leakage. PLoS One, 7(5), e36801. doi: 10.1371/journal.pone.0036801 Beaudoin, M. S., Perry, C. G., Arkell, A. M., Chabowski, A., Simpson, J. A., Wright, D. C., &; Holloway, G. P. (2014). Impairments in mitochondrial palmitoyl-CoA respiratory kinetics that precede development of diabetic cardiomyopathy are prevented by resveratrol in ZDF rats. J Physiol, 592(Pt 12), 2519-2533. doi: 10.1113/jphysiol.2013.270538 Bell, R. A., Dawson, N. J., &; Storey, K. B. (2012). Insights into the in vivo regulation of glutamate dehydrogenase from the foot muscle of an estivating land snail. Enzyme Res, 2012, 317314. doi: 10.1155/2012/317314 Benschop, R. J., Rodriguez-Feuerhahn, M., &; Schedlowski, M. (1996). Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain, behavior, and immunity, 10(2), 77-91. Brand, M. D., Chien, L.-F., Ainscow, E. K., Rolfe, D. F. S., &; Porter, R. K. (1994). The causes and functions of mitochondrial proton leak. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1187(2), 132-139. doi: http://dx.doi.org/10.1016/0005-2728(94)90099-X Camilleri, A., &; Vassallo, N. (2014). The Centrality of Mitochondria in the Pathogenesis and Treatment of Parkinson's Disease. CNS Neurosci Ther. doi: 10.1111/cns.12264 Chacko, B. K., Kramer, P. A., Ravi, S., Benavides, G. A., Mitchell, T., Dranka, B. P., . . . Darley-Usmar, V. M. (2014). The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin Sci (Lond), 127(6), 367-373. doi: 10.1042/CS20140101 Cheng, Z., &; Ristow, M. (2013). Mitochondria and metabolic homeostasis. Antioxid Redox Signal, 19(3), 240-242. doi: 10.1089/ars.2013.5255 Choi, H. S., Choi, Y. G., Sin, H. Y., Oh, J. M., Park, J. H., Kim, J. I., . . . Kim, Y. S. (2014). Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.04.069 Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., . . . Murphy, M. P. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527), 431-435. doi: 10.1038/nature13909 Dawson, N. J., &; Storey, K. B. (2012). An enzymatic bridge between carbohydrate and amino acid metabolism: regulation of glutamate dehydrogenase by reversible phosphorylation in a severe hypoxia-tolerant crayfish. J Comp Physiol B, 182(3), 331-340. doi: 10.1007/s00360-011-0629-4 Friedman, R. A., Navalta, J. W., Fedor, E. A., Kell, H. B., Lyons, T. S., Arnett, S. W., &; Schafer, M. A. (2012). Repeated high-intensity Wingate cycle bouts influence markers of lymphocyte migration but not apoptosis. Appl Physiol Nutr Metab, 37(2), 241-246. doi: 10.1139/h11-156 Fu, T. C., Wang, C. H., Lin, P. S., Hsu, C. C., Cherng, W. J., Huang, S. C., . . . Wang, J. S. (2013). Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol, 167(1), 41-50. doi: 10.1016/j.ijcard.2011.11.086 Gillum, T. L., Kuennen, M. R., Schneider, S., &; Moseley, P. (2011). A review of sex differences in immune function after aerobic exercise. Exerc Immunol Rev, 17, 104-121. Gleeson, M. (2007). Immune function in sport and exercise. Journal of Applied Physiology, 103(2), 693-699. Goncalves, I. O., Passos, E., Rocha-Rodrigues, S., Diogo, C. V., Torrella, J. R., Rizo, D., . . . Magalhaes, J. (2014). Physical exercise prevents and mitigates non-alcoholic steatohepatitis-induced liver mitochondrial structural and bioenergetics impairments. Mitochondrion. doi: 10.1016/j.mito.2014.03.012 Gubser, P. M., Bantug, G. R., Razik, L., Fischer, M., Dimeloe, S., Hoenger, G., . . . Hess, C. (2013). Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol, 14(10), 1064-1072. doi: 10.1038/ni.2687 Gutsaeva, D. R., Carraway, M. S., Suliman, H. B., Demchenko, I. T., Shitara, H., Yonekawa, H., &; Piantadosi, C. A. (2008). Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci, 28(9), 2015-2024. doi: 10.1523/JNEUROSCI.5654-07.2008 Haas, R., Marelli-Berg, F., &; Mauro, C. (2013). In the eye of the storm: T cell behavior in the inflammatory microenvironment. Am J Clin Exp Immunol, 2(2), 146-155. Haran, M., &; Gross, A. (2014). Balancing glycolysis and mitochondrial OXPHOS: lessons from the hematopoietic system and exercising muscles. Mitochondrion, 19 Pt A, 3-7. doi: 10.1016/j.mito.2014.09.007 Heerlein, K., Schulze, A., Hotz, L., Bartsch, P., &; Mairbaurl, H. (2005). Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells. Am J Respir Cell Mol Biol, 32(1), 44-51. doi: 10.1165/rcmb.2004-0202OC Higgins, G. C., &; Coughlan, M. T. (2014). Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol, 171(8), 1917-1942. doi: 10.1111/bph.12503 Hutter, E., Unterluggauer, H., Garedew, A., Jansen-Durr, P., &; Gnaiger, E. (2006). High-resolution respirometry--a modern tool in aging research. Exp Gerontol, 41(1), 103-109. doi: 10.1016/j.exger.2005.09.011 Jacobs, R. A., Boushel, R., Wright-Paradis, C., Calbet, J. A., Robach, P., Gnaiger, E., &; Lundby, C. (2013). Mitochondrial function in human skeletal muscle following high-altitude exposure. Exp Physiol, 98(1), 245-255. doi: 10.1113/expphysiol.2012.066092 Jacobs, R. A., &; Lundby, C. (2013). Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol (1985), 114(3), 344-350. doi: 10.1152/japplphysiol.01081.2012 Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R., &; Brand, M. D. (2010). Mitochondrial proton and electron leaks. Essays Biochem, 47, 53-67. doi: 10.1042/bse0470053 Jiang, H. K., Wang, Y. H., Sun, L., He, X., Zhao, M., Feng, Z. H., . . . Zang, W. J. (2014). Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: roles of mitochondrial network dynamics. Int J Mol Sci, 15(4), 5304-5322. doi: 10.3390/ijms15045304 Johnson, M. L., Robinson, M. M., &; Nair, K. S. (2013). Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab, 24(5), 247-256. doi: 10.1016/j.tem.2012.12.003 Kramer, P. A., Chacko, B. K., Ravi, S., Johnson, M. S., Mitchell, T., &; Darley-Usmar, V. M. (2014). Bioenergetics and the oxidative burst: protocols for the isolation and evaluation of human leukocytes and platelets. J Vis Exp(85). doi: 10.3791/51301 Ledderose, C., Bao, Y., Lidicky, M., Zipperle, J., Li, L., Strasser, K., . . . Junger, W. G. (2014). Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. J Biol Chem, 289(37), 25936-25945. doi: 10.1074/jbc.M114.575308 Lemieux, H., Semsroth, S., Antretter, H., Hofer, D., &; Gnaiger, E. (2011). Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol, 43(12), 1729-1738. doi: 10.1016/j.biocel.2011.08.008 McCarthy, D. A., &; Dale, M. M. (1988). The Leucocytosis of Exercise. Sports Medicine, 6(6), 333-363. doi: 10.2165/00007256-198806060-00002 McCarthy, D. A., Grant, M., Marbut, M., Watling, M., Wade, A. J., Macdonald, I., . . . Perry, J. D. (1991). Brief exercise induces an immediate and a delayed leucocytosis. British Journal of Sports Medicine, 25(4), 191-195. Mills, E., &; O'Neill, L. A. (2014). Succinate: a metabolic signal in inflammation. Trends Cell Biol, 24(5), 313-320. doi: 10.1016/j.tcb.2013.11.008 Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144-148. Moholdt, T. T., Amundsen, B. H., Rustad, L. A., Wahba, A., Lovo, K. T., Gullikstad, L. R., . . . Slordahl, S. A. (2009). Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J, 158(6), 1031-1037. doi: 10.1016/j.ahj.2009.10.003 Muftuoglu, M., Mori, M. P., &; de Souza-Pinto, N. C. (2014). Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion, 17, 164-181. doi: 10.1016/j.mito.2014.03.007 Nielsen, H., &; Pedersen, B. (1997). Lymphocyte proliferation in response to exercise. European journal of applied physiology and occupational physiology, 75(5), 375-379. Nieman, D. C. (1994). Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc, 26(2), 128-139. Nieman, D. C. (2000). Exercise effects on systemic immunity. Immunol Cell Biol, 78(5), 496-501. O'Sullivan, D., van der Windt, G. J., Huang, S. C., Curtis, J. D., Chang, C. H., Buck, M. D., . . . Pearce, E. L. (2014). Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity, 41(1), 75-88. doi: 10.1016/j.immuni.2014.06.005 Pearce, E. L., Poffenberger, M. C., Chang, C. H., &; Jones, R. G. (2013). Fueling immunity: insights into metabolism and lymphocyte function. Science, 342(6155), 1242454. doi: 10.1126/science.1242454 Pedersen, B. K., &; Toft, A. D. (2000). Effects of exercise on lymphocytes and cytokines. British Journal of Sports Medicine, 34(4), 246-251. doi: 10.1136/bjsm.34.4.246 Perl, A., Gergely, P., Jr., Puskas, F., &; Banki, K. (2002). Metabolic switches of T-cell activation and apoptosis. Antioxid Redox Signal, 4(3), 427-443. doi: 10.1089/15230860260196227 Pesta, D., &; Gnaiger, E. (2012). High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol, 810, 25-58. doi: 10.1007/978-1-61779-382-0_3 Plaitakis, A., &; Zaganas, I. (2001). Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res, 66(5), 899-908. Plas, D. R., Rathmell, J. C., &; Thompson, C. B. (2002). Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol, 3(6), 515-521. doi: 10.1038/ni0602-515 Reddy, P. H. (2014). Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today. doi: 10.1016/j.drudis.2014.03.020 Robach, P., Bonne, T., Fluck, D., Burgi, S., Toigo, M., Jacobs, R. A., &; Lundby, C. (2014). Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med Sci Sports Exerc, 46(10), 1936-1945. doi: 10.1249/MSS.0000000000000321 Schlagowski, A. I., Singh, F., Charles, A. L., Gali Ramamoorthy, T., Favret, F., Piquard, F., . . . Zoll, J. (2014). Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations. J Appl Physiol (1985), 116(4), 364-375. doi: 10.1152/japplphysiol.01177.2013 Sena, L. A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D. A., . . . Chandel, N. S. (2013). Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity, 38(2), 225-236. doi: 10.1016/j.immuni.2012.10.020 Shephard, M. D., Penberthy, L. A., &; Berry, M. N. (1987). Adaptation of methods for glutamate dehydrogenase and alcohol dehydrogenase activities to a centrifugal analyser: assessment of their clinical use in anoxic states of the liver. J Clin Pathol, 40(10), 1240-1246. Simpson, R. J. (2011). Aging, persistent viral infections, and immunosenescence: can exercise "make space"? Exerc Sport Sci Rev, 39(1), 23-33. doi: 10.1097/JES.0b013e318201f39d Solaini, G., Baracca, A., Lenaz, G., &; Sgarbi, G. (2010). Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta, 1797(6-7), 1171-1177. doi: 10.1016/j.bbabio.2010.02.011 Sonkar, V. K., Kulkarni, P. P., &; Dash, D. (2014). Amyloid beta peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization. Faseb j, 28(4), 1819-1829. doi: 10.1096/fj.13-243691 Stanley, C. A. (2009). Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children. Am J Clin Nutr, 90(3), 862s-866s. doi: 10.3945/ajcn.2009.27462AA Sultana, R., Baglioni, M., Cecchetti, R., Cai, J., Klein, J. B., Bastiani, P., . . . Butterfield, D. A. (2013). Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med, 65, 595-606. doi: 10.1016/j.freeradbiomed.2013.08.001 Thauer, R. K. (1988). Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem, 176(3), 497-508. Tjønna, A. E., Leinan, I. M., Bartnes, A. T., Jenssen, B. M., Gibala, M. J., Winett, R. A., &; Wisløff, U. (2013). Low- and High-Volume of Intensive Endurance Training Significantly Improves Maximal Oxygen Uptake after 10-Weeks of Training in Healthy Men. PLoS One, 8(5), e65382. doi: 10.1371/journal.pone.0065382 Tjonna, A. E., Lee, S. J., Rognmo, O., Stolen, T. O., Bye, A., Haram, P. M., . . . Wisloff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation, 118(4), 346-354. doi: 10.1161/circulationaha.108.772822 Torraco, A., Peralta, S., Iommarini, L., &; Diaz, F. (2015). Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion, 21, 76-91. doi: 10.1016/j.mito.2015.01.009 Turner, J. E., Bosch, J. A., &; Aldred, S. (2011). Measurement of exercise-induced oxidative stress in lymphocytes. Biochem Soc Trans, 39(5), 1299-1304. doi: 10.1042/BST0391299 Van Bergen, N. J., Blake, R. E., Crowston, J. G., &; Trounce, I. A. (2014). Oxidative phosphorylation measurement in cell lines and tissues. Mitochondrion, 15C, 24-33. doi: 10.1016/j.mito.2014.03.003 van der Merwe, C., Loos, B., Swart, C., Kinnear, C., Henning, F., van der Merwe, L., . . . Bardien, S. (2014). Mitochondrial impairment observed in fibroblasts from South African Parkinson's disease patients with parkin mutations. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.03.151 van der Windt, G. J., Everts, B., Chang, C. H., Curtis, J. D., Freitas, T. C., Amiel, E., . . . Pearce, E. L. (2012). Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity, 36(1), 68-78. doi: 10.1016/j.immuni.2011.12.007 Wang, J. S., Chen, W. L., &; Weng, T. P. (2011). Hypoxic exercise training reduces senescent T-lymphocyte subsets in blood. Brain Behav Immun, 25(2), 270-278. doi: 10.1016/j.bbi.2010.09.018 Wang, J. S., &; Lin, C. T. (2010). Systemic hypoxia promotes lymphocyte apoptosis induced by oxidative stress during moderate exercise. Eur J Appl Physiol, 108(2), 371-382. doi: 10.1007/s00421-009-1231-2 Wen, X., Wu, J., Chang, J. S., Zhang, P., Wang, J., Zhang, Y., . . . Zhang, Y. (2014). Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 alpha mRNA in mouse skeletal muscle. Biomed Res Int, 2014, 402175. doi: 10.1155/2014/402175 Weng, T. P., Huang, S. C., Chuang, Y. F., &; Wang, J. S. (2013). Effects of interval and continuous exercise training on CD4 lymphocyte apoptotic and autophagic responses to hypoxic stress in sedentary men. PLoS One, 8(11), e80248. doi: 10.1371/journal.pone.0080248 Williams, M. S., &; Kwon, J. (2004). T cell receptor stimulation, reactive oxygen species, and cell signaling. Free Radic Biol Med, 37(8), 1144-1151. doi: 10.1016/j.freeradbiomed.2004.05.029 Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., . . . Skjaerpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115(24), 3086-3094. doi: 10.1161/circulationaha.106.675041 Wohlgemuth, S. E., Calvani, R., &; Marzetti, E. (2014). The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol, 71C, 62-70. doi: 10.1016/j.yjmcc.2014.03.007 Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., . . . Ferrick, D. A. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol, 292(1), C125-136. doi: 10.1152/ajpcell.00247.2006 Wu, Z., Zhu, Y., Cao, X., Sun, S., &; Zhao, B. (2014). Mitochondrial Toxic Effects of Abeta Through Mitofusins in the Early Pathogenesis of Alzheimer's Disease. Mol Neurobiol. doi: 10.1007/s12035-014-8675-z Xu, A., Liu, J., Liu, P., Jia, M., Wang, H., &; Tao, L. (2014). Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome. Biochem Biophys Res Commun, 446(4), 1184-1189. doi: 10.1016/j.bbrc.2014.03.089
|